/* * Author: srtry * Created: 2025-04-30T04:38:41+09:00 */ use proconio::input; use std::io::{stdout,Write,BufWriter}; fn solve(&n:&usize, twin_primes_prod:&Vec) -> Option { let mut left:usize = 0; let mut right:usize = twin_primes_prod.len()-1; let mut mid:usize = (left+right+1)/2; loop { if right-left <= 1 { break; } mid = (left+right+1)/2; if twin_primes_prod[mid] <= n { left = mid; } else { right = mid-1; } } if twin_primes_prod[right] <= n { return Some(twin_primes_prod[right]) } else if twin_primes_prod[left] <= n { return Some(twin_primes_prod[left]); } else { return None; } } fn main() { let stdin = std::io::read_to_string(std::io::stdin()).unwrap(); let mut stdin = stdin.split_whitespace(); let mut max_max_p:usize = 0; let t:usize = stdin.next().unwrap().parse::().unwrap(); let case = { let mut tmp:Vec = vec![0;t]; for i in 0..t { tmp[i] = stdin.next().unwrap().parse::().unwrap(); if tmp[i] > max_max_p { max_max_p = tmp[i]; } } tmp }; max_max_p = (max_max_p as f64).sqrt() as usize; // エラトステネスの篩 let mut is_prime:Vec = vec![true;max_max_p+3]; is_prime[0] = false; is_prime[1] = false; for i in 2..is_prime.len() { if is_prime[i] { for j in i..=(max_max_p/i) { is_prime[j*i] = false; } } } // 双子素数の積 let mut twin_primes_prod:Vec = Vec::new(); for i in 0..=max_max_p { if is_prime[i] && is_prime[i+2] { twin_primes_prod.push(i*(i+2)); } } let out = stdout(); let mut out = BufWriter::new(out.lock()); let mut ans; for &c in case.iter() { ans = solve(&c, &twin_primes_prod); match ans { Some(x) => write!(out, "{}\n", x).unwrap(), None => write!(out, "-1\n").unwrap(), } } }