#include using namespace std; long long mod = 998244353; //入力が必ず-mod= mod) v -= mod; return *this; } mint operator-=(const mint b){ v -= b.v; if(v < 0) v += mod; return *this; } mint operator*=(const mint b){v = v*b.v%mod; return *this;} mint operator/=(mint b){ //素数modオンリー. if(b == 0) assert(false); long long left = mod-2; while(left){if(left&1) *this *= b; b *= b; left >>= 1;} return *this; } mint operator++(){*this += 1; return *this;} mint operator--(){*this -= 1; return *this;} mint operator++(int){*this += 1; return *this;} mint operator--(int){*this -= 1; return *this;} bool operator==(const mint b)const{return v == b.v;} bool operator!=(const mint b)const{return v != b.v;} bool operator>(const mint b)const{return v > b.v;} bool operator>=(const mint b)const{return v >= b.v;} bool operator<(const mint b)const{return v < b.v;} bool operator<=(const mint b)const{return v <= b.v;} mint pow(long long n)const{ //nが超デカい時はmod P-1で取るべき場合がある. mint ret = 1,p = v; if(n < 0) p = p.inv(),n = -n; //負も対応. while(n){ if(n&1) ret *= p; p *= p; n >>= 1; } return ret; } mint inv()const{return mint(1)/v;} }; namespace to_fold{ //纏めて折り畳むためのやつ 苦労したが結局ほぼACLの写経. __int128_t safemod(__int128_t a,long long m){a %= m; if(a < 0) a += m; return a;} pair invgcd(long long a,long long b){ //return {gcd(a,b),x} (xa≡g(mod b)) a = safemod(a,b); if(a == 0) return {b,0}; long long x = 0,y = 1,memob = b; while(a){ long long q = b/a; b -= a*q; swap(x,y); y -= q*x; swap(a,b); } if(x < 0) x += memob/b; return {b,x}; } long long Garner(vector &A,vector &M){ __int128_t mulM = 1,x = A.at(0)%M.at(0); //Mの要素のペア互いに素必須. for(int i=1; i root,iroot,rate2,irate2,rate3,irate3; fftinfo(mint g){ checkmod = mod; int rank2 = countzero(mod-1); root[rank2] = g.pow((mod-1)>>rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1]*root[i+1]; iroot[i] = iroot[i+1]*iroot[i+1]; } mint mul = 1,imul = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2]*mul; irate2[i] = iroot[i+2]*imul; mul *= iroot[i+2],imul *= root[i+2]; } mul = 1,imul = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3]*mul; irate3[i] = iroot[i+3]*imul; mul *= iroot[i+3],imul *= root[i+3]; } } }; mint findroot(){ if(mod == 998244353) return mint(3); else if(mod == 754974721) return mint(11); else if(mod == 167772161) return mint(3); else if(mod == 469762049) return mint(3); assert(false); //バグあるので禁止. long long p = mod-1; vector P; for(long long i=2; i*i<=p; i++){ if(p%i) continue; while(p%i == 0) p /= i; P.push_back(i); } if(p != 1) P.push_back(p); p = mod-1; random_device rnd; mt19937 mt(rnd()); while(true){ mint ret = mt()%mod; if(ret == 1 || ret == 0) continue; if(ret.pow(p) != 1) continue; bool ok = true; for(auto check : P) if(ret.pow(p/check) == 1){ok = false; break;} if(ok) return ret; } //O(√P)らしいです. } fftinfo info(3); void NTT(vector &A){ if(info.getmod() != mod) info = fftinfo(findroot()); int N = A.size(),ln = countzero(N); int dep = 0; while(dep < ln){ if(ln-dep == 1){ int p = 1<<(ln-dep-1); mint rot = 1; for(int o=0; o<(1< &A){ if(info.getmod() != mod) info = fftinfo(findroot()); int N = A.size(),ln = countzero(N),dep = ln; while(dep){ if(dep == 1){ int p = 1<<(ln-dep); mint irot = 1; for(int o=0; o<(1<<(dep-1)); o++){ int offset = o<<(ln-dep+1); for(int i=0; i convolution(const vector &A,const vector &B){ int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1,N = 1; if(siza == 0 || sizb == 0) return {}; if(min(siza,sizb) <= 60){ //naive. vector ret(sizc); if(siza >= sizb){for(int i=0; i ca = A,cb = B; ca.resize(N),cb.resize(N); assert((mod-1)%N == 0); mint root = findroot(); NTT(ca); NTT(cb); for(int i=0; i convolution_ll(const vector &A,const vector &B){ //long longに収まる範囲. int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1; if(siza == 0 || sizb == 0) return {}; vector ret(sizc); if(min(siza,sizb) <= 200){ //naive 200はやばい?. vector ret(sizc); if(siza >= sizb){for(int i=0; i a(siza),b(sizb); for(int i=0; i C1 = convolution(a,b); mod = mod2; for(int i=0; i C2 = convolution(a,b); mod = mod3; for(int i=0; i C3 = convolution(a,b); vector offset = {0,0,m1m2m3,2*m1m2m3,3*m1m2m3}; for(int i=0; i convolution_llmod(vector &A,vector &B,long long memomod){ int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1; if(siza == 0 || sizb == 0) return {}; vector ret(sizc); if(min(siza,sizb) <= 200){ for(int i=0; i a(siza),b(sizb); for(int i=0; i C1 = convolution(a,b); mod = mod2; for(int i=0; i C2 = convolution(a,b); mod = mod3; for(int i=0; i C3 = convolution(a,b); mod = memomod; for(int i=0; i A = {C1.at(i).v,C2.at(i).v,C3.at(i).v}; vector M = {mod1,mod2,mod3}; ret.at(i) = Garner(A,M); } return ret; } vector convolution_int(vector &A,vector &B){ //intに収まる範囲. if(A.size() == 0 || B.size() == 0) return {}; vector ret; if(min(A.size(),B.size()) <= 60){ ret.resize(A.size()+B.size()-1); for(int i=0; i X,Y,Z; for(auto &a : A) X.push_back(a); for(auto &b : B) Y.push_back(b); Z = convolution(X,Y); for(auto &z : Z) ret.push_back(z.v); } return ret; } } using namespace to_fold; template //実質mintだけ?. struct FormalPowerSeries:vector{ //NTT-friendly素数だけ じゃなくてもいいけど全部書き直せ!. using vector::vector; using fps = FormalPowerSeries; //重要なところは某のほぼパクリ. fps operator++(){*this += 1; return *this;} fps operator--(){*this -= 1; return *this;} fps operator++(int){*this += 1; return *this;} fps operator--(int){*this -= 1; return *this;} fps operator+(const fps &b) const {return fps(*this)+=b;} fps operator+(const T &b) const {return fps(*this)+=b;} fps operator-(const fps &b) const {return fps(*this)-=b;} fps operator-(const T &b) const {return fps(*this)-=b;} fps operator*(const fps &b){return fps(*this)*=b;} fps operator*(const T &b) const {return fps(*this)*=b;} fps operator/(const fps &b) const {return fps(*this)/=b;} fps operator%(const fps &b) const {return fps(*this)%=b;} fps operator>>(const unsigned int b) const {return fps(*this)>>=b;} fps operator<<(const unsigned int b) const {return fps(*this)<<=b;} fps operator-() const { fps ret = (*this); for(auto &v : ret) v = -v; return ret; } bool operator==(const fps &b)const{ if((*this).size() != b.size()) return false; for(int i=0; i<(*this).size(); i++) if((*this).at(i) != b.at(i)) return false; return true; } bool operator!=(const fps &b)const{return !((*this)==b);} fps &operator+=(const fps &b){ //Cix^i = (Ai+Bi)x^i. O(n). if((*this).size() < b.size()) (*this).resize(b.size(),0); for(int i=0; i f,g; for(auto v : (*this)) f.emplace_back(v); for(auto v : b) g.emplace_back(v); vector ret; if(mod == 998244353) ret = convolution(f,g); //型を仕方なく合わせる C++わからん. else ret = convolution_llmod(f,g,mod); //modがNTT-friendlyじゃない時用 直すのだるい 998以外はとりあえずこっち. (*this).resize(ret.size()); for(int i=0; i>=(const unsigned int &b){//b<0は対象外. 先頭b項を削除. O(n) if((*this).size() <= b) (*this).clear(); else (*this).erase((*this).begin(),(*this).begin()+b); return *this; } fps &operator<<=(const unsigned int &b){//b<0は対象外. 先頭b項に0を挿入. O(n) (*this).insert((*this).begin(),b,0); return *this; } fps &operator%=(const fps &b){ //多項式の余り. O(nlogn) (*this) -= (*this)/b*b; del0(); return (*this); } fps &operator/=(const fps &b){ //多項式としての除算 O(nlogn). assert(b.size() > 0); //分母の末尾0は駄目. T check = b.back(); assert(check != 0); del0(); //分子の末尾0は消して許容. if((*this).size() < b.size()){ (*this).clear(); return *this; } int n = (*this).size()-b.size()+1; if(b.size() <= 64){ //愚直. fps G(b); assert(G.size() > 0); T div = G.back().inv(); for (auto &v : G) v *= div; int deg = (*this).size()-G.size()+1; fps Q(deg); for(int i=deg-1; i>=0; i--) { Q[i] = (*this).at(i+G.size()-1); for(int k=0; k> P; for(int i=0; i> P; if((*this).at(0) != 1) div = T((*this).at(0)).inv(); for(int i=1; i= k) ret.at(i) -= v*ret.at(i-k); //-xが+ret[i-1]に対応. if(div != 1) for(auto &v : ret) v *= div; return ret; } fps inv_sparse(const fps &b,int deg = -1)const{ //f/gを返す 1/fでは分母だがこれは分子に注意. int n = (*this).size(),m = b.size(); if(deg == -1) deg = n; assert(b.at(0) != 0); T div = 1; vector> P; if(b.at(0) != 1) div = T(b.at(0)).inv(); for(int i=1; i= k) ret.at(i) -= v*ret.at(i-k); if(div != 1) for(auto &v : ret) v *= div; return ret; } fps log_sparse(int deg = -1){ //log(f)を返す O(N*非0). //logf = ∫(f'/f) inv,1/f*(f')がO(N*非0) 他はO(N). assert((*this).size()&&(*this).at(0)==1); if(deg == -1) deg = (*this).size(); fps ret = (*this).diff(); ret = ((*this).inv_sparse(deg)).multi_sparse(ret); return ret.inte().prefix(deg); } fps exp_sparse(int deg = -1)const{ //exp(f)を返す O(N*非0). //(expf)'=(f')*exp(f)より低次から決まる. //[x^0]expf=1より左辺のx^0の係数が求まる->expfのx^1の係数が求まる->... if(deg == -1) deg = (*this).size(); fps ret(deg); if((*this).size() == 0){ if(deg > 0) ret.at(0) = 1; return ret; } assert((*this).at(0) == 0); if(deg == 1) return fps{1}; ret.at(0) = 1; ret.at(1) = 1; for(int i=2; i> P; for(int i=1; i<(*this).size(); i++) if((*this).at(i) != 0) P.emplace_back(pair{i-1,(*this).at(i)*i}); for(int i=0; i 0) ret.at(0) = 1; return ret; } for(int t=0; t> P; for(int i=t+1; i 1) ret.at(1) = 1; for(int i=2; i n+1) break; if(i > 0 && i<=n+1) now += mulK*ret.at(n+1-i)*i*v; if(i > 0 && i <= n) now -= v*(n+1-i)*ret.at(n+1-i); } ret.at(n+1) *= now; } ret *= T((*this).at(t)).pow(K); return (ret<<(t*K)).prefix(deg); } if(K >= deg || (t+1)*K >= deg) break; } return fps(deg,0); } fps diff()const{ //微分 nx^(n-1) = (x^n)' O(n). int n = (*this).size(); if(n <= 1) return {}; fps ret(n-1); T multi = 1; for(int i=1; i divi; //invと衝突回避用 mintでiの逆元. divi.resize(deg*2); divi.at(1) = 1; for(int i=2; i void { //inplaceで積分. int n = f.size(); f.insert(f.begin(),0); for(int i=1; i<=n; i++) f.at(i) *= divi.at(i); }; auto differential = [&](fps &f) -> void { //inplaceで微分. if(f.size() == 0) return; f.erase(f.begin()); T multi = 0; for(int i=0; i 1) f.push_back((*this).at(1)); else f.push_back(0); for(int m=2; m 0) ret.at(0) = 1; return ret; } for(int i=0; i>i).log(deg)*(K%mod)).exp(deg); ret *= T((*this).at(i)).pow(K); //[x^i]f^Kの分. ret = (ret<<(i*K)).prefix(deg); //*x^(i*k)の分. return ret; } else{ T div = T(1)/(*this).at(i); //*([x^i]f)^Kと *x^(i*k)の分は後回し. fps ret = ((((*this)*div)>>i).log(deg,false)*(K%mod)).exp2(deg); ret *= T((*this).at(i)).pow(K); //[x^i]f^Kの分. ret = (ret<<(i*K)).prefix(deg); //*x^(i*k)の分. return ret; } } if(K >= deg || (i+1)*K >= deg) break; //((i+1)*K)乗未満は0確定 int128回避用にK>=deg(degがllはやばい). } return fps(deg,0); //fの係数全て0なら係数全て0. } fps prefix(int siz)const{ //先頭siz項を返す なかったら0埋め. O(siz). fps ret((*this).begin(),(*this).begin()+min((int)(*this).size(),siz)); if(ret.size() < siz) ret.resize(siz,0); return ret; } void del0(){ //末尾の0を消す O(n). while((*this).size() && (*this).back() == 0) (*this).pop_back(); } fps rev()const{ //ひっくり返す O(n). fps ret(*this); reverse(ret.begin(),ret.end()); return ret; } pair getQR(const fps &b)const{ //多項式の商と余りを同時に得る O(nlogn). fps Q = (*this)/b,R = (*this)-Q*b; R.del0(); return {Q,R}; } fps cumulativeNtimes(int N,T b,int deg=-1){ //1/(1-bx)^Nをdeg次まで返す 指定なしはN次まで. //負の二項定理を使う. 1/(1-x)^N=Σ[i=0~∞]((n+i-1) choose i)(bx^i); //fps{}.cumulativeNtime()で無理やり関数を呼び出す. assert(N <= 0); //N=0も駄目? {1}を返すべき所{0}になる. if(deg == -1) deg = N+1; int Limit = N+deg; //Limit 必要なサイズ fac->x! facinv->1/x! inv->1/x. vector FAC(Limit+1,1); for(int i=1; i<=Limit; i++) FAC.at(i) = FAC.at(i-1)*i; vector FACinv(Limit+1); FACinv.at(min((int)mod-1,Limit)) = FAC.at(min((int)mod-1,Limit)).inv(); for(int i=min((int)mod-2,Limit-1); i>=0; i--) FACinv.at(i) = FACinv.at(i+1)*(i+1); auto nCr = [&](int n, int r) -> T { if(n < r || r < 0 || n < 0) return 0; return FAC.at(n)*FACinv.at(r)*FACinv.at(n-r); }; fps ret(deg); T value = 1; for(int i=0; ix! facinv->1/x! inv->1/x. vector fac(deg+1,1); for(int i=1; i<=deg; i++) fac.at(i) = fac.at(i-1)*i; vector facinv(deg+1); facinv.at(min((int)mod-1,deg)) = fac.at(min((int)mod-1,deg)).inv(); for(int i=min((int)mod-2,deg-1); i>=0; i--) facinv.at(i) = facinv.at(i+1)*(i+1); fps X(deg),Y(deg); for(int i=0; i; //mod998244353以外のNTT-friendlyの時は色々気を付ける 後で書き直すかも?. ostream &operator<<(ostream &os,const fps &a){ for(auto v : a) cout << v.v << " "; return os; } mint BostanMori(long long N,fps &P,fps &Q){ P.del0(),Q.del0(); int K = Q.size(); mint ret = 0; if(P.size() >= Q.size()){ //deg(P)>=deg(Q)の時. auto R = P/Q; P -= R*Q; P.del0(); if(N < R.size()) ret += R.at(N); } if(P.size() == 0) return ret; if(mod == 998244353){ //mod998244353以外はNTT-friendlyじゃないと認識する. int n = 1; while(n < K) n <<= 1; P.resize(2*n); Q.resize(2*n); NTT(P),NTT(Q); vector S(n),T(n); vector Bitrev(n); //ビットリバース. for(int i=0; i>1; Bitrev.at(i) += (Bitrev.at(i>>1)>>1); } mint dw = findroot().inv().pow((mod-1)/(2*n)),divn = mint(1)/n; mint zeta = mint(findroot()).pow((mod-1)/(n<<1)); auto doubling = [&](fps &A){ //これなに?. auto B = A; INTT(B); for(int i=0; i>1) = Q.at(i)*Q.at(i+1); //Q(x)Q(-x)の偶数次. if(N&1){ //P(x)Q(-x)の奇数次. for(auto i : Bitrev){ S.at(i) = (P.at(i<<1)*Q.at((i<<1)+1)-P.at((i<<1)+1)*Q.at(i<<1))*div2; div2 *= dw; //これ分からん. } } else{ //P(x)Q(-x)の偶数次. for(int i=0; i<(n<<1); i+=2) S.at(i>>1) = (P.at(i)*Q.at(i+1)+P.at(i+1)*Q.at(i))*div2; } swap(P,S),swap(Q,T); N >>= 1; if(N < n) break; doubling(P),doubling(Q); } INTT(P),INTT(Q); for(int i=0; i>1) = Q.at(i); //偶数次しかないので次数/2をする. Q.resize((Q.size()+1)>>1); if(N&1){ //Nthが奇数の場合は分子の偶数次は要らない (分母が偶数次しかない). for(int i=1; i>1) = P.at(i); P.resize(P.size()>>1); } else{ //Nthが偶数. for(int i=0; i>1) = P.at(i); P.resize((P.size()+1)>>1); } N >>= 1; } return ret+P.at(0); } } mint NthLinearlyRecurrent(long long N,const fps &A,fps C){ //Ai(i>=K)=Σ[j=1~K]Cj*A[i-j]のN番目を求める. //P = Q*A->[x^N]P/Qで求める O(KlogKlogN). //Q = 1-Σ[i=1~K]Cix^i. PはK次未満の項しかない. assert(C.size()); if(N < A.size()) return A.at(N); //元々Nthがある場合. assert(A.size() >= C.size()); //A[K-1]までは与えられている必要がある. C.insert(C.begin(),mint(-1)); for(auto &v : C) v = -v; fps P = A.prefix((int)C.size()-1)*C; P.resize(C.size()-1); return BostanMori(N,P,C); } int main(){ ios_base::sync_with_stdio(false); cin.tie(nullptr); mod = 1e9+7; long long N,P,C; cin >> N >> P >> C; int n = 14; vector> dp,dp2 = dp; { vector D = {2,3,5,7,11,13}; n = 13*P+1; dp.resize(n,vector(6)); dp.at(0).at(0) = 1; while(P--){ vector> next(n,vector(6)); for(int i=0; i= n) break; next.at(i+D.at(l)).at(l) += dp.at(i).at(k); } } swap(dp,next); } } swap(dp,dp2); swap(P,C); { vector D = {4,6,8,9,10,12}; n = 12*P+1; dp.resize(n,vector(6)); dp.at(0).at(0) = 1; while(P--){ vector> next(n,vector(6)); for(int i=0; i= n) break; next.at(i+D.at(l)).at(l) += dp.at(i).at(k); } } swap(dp,next); } } fps f(dp.size()),g(dp2.size()); for(int i=0; i