MOD = 998244353 max_n = 2 * 10**5 + 10 # Precompute factorials and inverse factorials modulo MOD fact = [1] * max_n for i in range(1, max_n): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * max_n inv_fact[max_n - 1] = pow(fact[max_n - 1], MOD - 2, MOD) for i in range(max_n - 2, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD N = int(input()) a = [0] * (N + 1) for m in range(N): sign = 1 if m % 2 == 0 else MOD - 1 # Compute combination C(N-1, m) if m > N - 1: C = 0 else: C = fact[N - 1] * inv_fact[m] % MOD C = C * inv_fact[N - 1 - m] % MOD term = sign * C % MOD term = term * inv_fact[m] % MOD i = N - m a[i] = term for ai in a: print(ai % MOD)