// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; template using V = vector; template using VV = V>; template using VVV = V>; template using VVVV = VV>; #define rep(i,n) for(ll i=0ll;(i)<(n);(i)++) #define REP(i,a,n) for(ll i=(a);(i)<(n);(i)++) #define rrep(i,n) for(ll i=(n)-1;(i)>=(0ll);(i)--) #define RREP(i,a,n) for(ll i=(n)-1;(i)>=(a);(i)--) const long long INF = (1LL << 60); const long long mod99 = 998244353; const long long mod107 = 1000000007; const long long mod = mod99; #define eb emplace_back #define be(v) (v).begin(),(v).end() #define all(v) (v).begin(),(v).end() #define foa(i,v) for(auto& (i) : (v)) #define UQ(v) sort(be(v)), (v).erase(unique(be(v)), (v).end()) #define UQ2(v,cmp) sort(be(v)), (v).erase(unique(be(v),cmp), (v).end()) #define UQ3(v,cmp) sort(be(v),cmp), (v).erase(unique(be(v)), (v).end()) #define UQ4(v,cmp,cmp2) sort(be(v), cmp), (v).erase(unique(be(v),cmp2), (v).end()) #define LB(x,v) (lower_bound(be(v),(x))-(v).begin()) #define LB2(x,v,cmp) (lower_bound(be(v),(x),(cmp))-(v).begin()) #define UB(x,v) (upper_bound(be(v),(x))-(v).begin()) #define UB2(x,v,cmp) (upper_bound(be(v),(x),(cmp))-(v).begin()) #define dout() cout << fixed << setprecision(20) #define randinit() srand((unsigned)time(NULL)) template bool chmin(T& t, const U& u) { if (t > u){ t = u; return 1;} return 0; } template bool chmax(T& t, const U& u) { if (t < u){ t = u; return 1;} return 0; } ll Rnd(ll L=0, ll R=mod99){return rand()%(R-L)+L;} using Point = complex; using Line = vector; #define X real() #define Y imag() const double EPS = 1e-10; inline double dot(const Point& a, const Point& b) { return a.X * b.X + a.Y * b.Y; } inline double cross(const Point& a, const Point& b) { return a.X * b.Y - a.Y * b.X; } inline double abs(const Point& a) { return sqrt(dot(a, a)); } vector convex_hull(vector& ps, bool collinear = false) { int n = ps.size(); if(n <= 1) return ps; sort(ps.begin(), ps.end(), [&EPS](const Point& a, const Point& b) { return abs(a.X - b.X) > EPS ? a.X < b.X : a.Y < b.Y; }); vector hull(2 * n); double th = collinear ? -EPS : EPS; int k = 0; for(int i = 0; i < n; i++) { if(k >= 2) { while(cross(hull[k - 1] - hull[k - 2], ps[i] - hull[k - 2]) < th) { k--; if(k < 2) break; } } if(k < 1 || abs(hull[k - 1] - ps[i]) > EPS) { hull[k] = ps[i]; k++; } } int t = k + 1; for(int i = n - 2; i >= 0; i--) { if(k >= t) { while(cross(hull[k - 1] - hull[k - 2], ps[i] - hull[k - 2]) < th) { k--; if(k < t) break; } } if(k < 1 || abs(hull[k - 1] - ps[i]) > EPS) { hull[k] = ps[i]; k++; } } hull.resize(max(1, k - 1)); return hull; } void solve(){ int N; cin >> N; vector ps(N); for(int i = 0; i < N; i++) { double x, y; cin >> x >> y; ps[i] = Point(x, y); } auto ans = convex_hull(ps); if(size(ans) == N) cout << "Yes" << endl; else cout << "No" << endl; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int t=1; // cin >> t; rep(i,t) solve(); }