# include using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); templateconstexpr T inf() { return ::std::numeric_limits::max(); } templateconstexpr T hinf() { return inf() / 2; } template T_char TL(T_char cX) { return tolower(cX); } template T_char TU(T_char cX) { return toupper(cX); } template bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template using dijk = priority_queue, greater>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define eb emplace_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast(0)) using namespace mmrz; using DOUBLE = long double; constexpr DOUBLE EPS = 1e-9; struct point { DOUBLE x, y; point(DOUBLE _x = 0, DOUBLE _y = 0): x(_x), y(_y) {} point operator+(point p){ return point(x+p.x, y+p.y); }; point operator-(point p){ return point(x-p.x, y-p.y); }; point operator*(DOUBLE a) {return point(x*a, y*a); }; point operator/(DOUBLE a) {return point(x/a, y/a); }; DOUBLE abs() {return sqrt(norm()); }; DOUBLE norm() {return x*x + y*y; }; bool operator<(const point &p) const { return (not (fabs(x-p.x) < EPS)? x EPS)return COUNTER_CLOCKWISE; if(cross(a, b) < -EPS)return CLOCKWISE; if(dot(a, b) < -EPS)return ONLINE_BACK; if(a.norm() < b.norm())return ONLINE_FRONT; return ON_SEGMENT; } bool intersect(point p1, point p2, point p3, point p4) { return (ccw(p1, p2, p3)*ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1)*ccw(p3, p4, p2) <= 0); } bool intersect(segment s1, segment s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } point project(line &s, point &p) { point base = s.p2 - s.p1; DOUBLE r = dot(p-s.p1, base) / base.norm(); return s.p1 + base*r; } DOUBLE get_distance(point &a, point &b){ return (a-b).abs(); } // line, point DOUBLE get_distance_lp(line &l, point &p){ return abs(cross(l.p2-l.p1, p-l.p1) / (l.p2-l.p1).abs()); } // segment, point DOUBLE get_distance_sp(segment &s, point &p){ if(dot(s.p2-s.p1, p-s.p1) < 0.0)return (p-s.p1).abs(); if(dot(s.p1-s.p2, p-s.p2) < 0.0)return (p-s.p2).abs(); return get_distance_lp(s, p); } DOUBLE get_distance(segment &s1, segment &s2){ if(intersect(s1, s2))return 0.0; return min({get_distance_sp(s1, s2.p1), get_distance_sp(s1, s2.p2), get_distance_sp(s2, s1.p1), get_distance_sp(s2, s1.p2)}); } pair get_crosspoints(circle &c, line &l){ point pr = project(l, c.c); point e = (l.p2-l.p1)/(l.p2-l.p1).abs(); DOUBLE base = sqrt(max(0.0, c.r*c.r - (pr-c.c).norm())); return {pr+e*base, pr-e*base}; } point polar (DOUBLE a, DOUBLE r){ return point(cos(r)*a, sin(r)*a); } pair get_crosspoints(circle &c1, circle &c2){ DOUBLE d = (c1.c-c2.c).abs(); DOUBLE a = acos((c1.r*c1.r + d*d - c2.r*c2.r) / (2*c1.r*d)); DOUBLE t = atan2((c2.c-c1.c).y, (c2.c-c1.c).x); return {c1.c+polar(c1.r, t+a), c1.c+polar(c1.r, t-a)}; } DOUBLE deg_to_rad(const DOUBLE °) {return deg*pi / 180.0; }; vector convex_hull(vector ps, bool _ON_SEGMENT){ int n = (int)ps.size(); sort(ps.begin(), ps.end()); int k = 0; vector qs(n*2); for(int i = 0;i < n;i++){ if(_ON_SEGMENT)while(k > 1 && cross(qs[k-1]-qs[k-2], ps[i]-qs[k-1]) < 0.0)k--; else while(k > 1 && cross(qs[k-1]-qs[k-2], ps[i]-qs[k-1]) <= 0.0)k--; qs[k++] = ps[i]; } for(int i = n-2, t=k;i >= 0;i--){ if(_ON_SEGMENT)while(k > t && cross(qs[k-1]-qs[k-2], ps[i]-qs[k-1]) < 0.0)k--; else while(k > t && cross(qs[k-1]-qs[k-2], ps[i]-qs[k-1]) <= 0.0)k--; qs[k++] = ps[i]; } qs.resize(k-1); return qs; } void SOLVE(){ int n; cin >> n; vector ps(n); rep(i, n){ cin >> ps[i].x >> ps[i].y; } auto qs = convex_hull(ps, false); cout << (len(qs) == n ? "Yes\n" : "No\n"); } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }