#include using namespace std; struct Montgomery{ //2^62未満&奇数modのみ. //初めにsetmodする. using u64 = uint64_t; using u128 = __uint128_t; private: static u64 mod,N2,Rsq; //N*N2≡1(mod N); //Rsq = R^2modN; R=2^64. u64 v = 0; public: long long val(){return reduce(v);} u64 getmod(){return mod;} static void setmod(u64 m){ assert(m<(1LL<<62)&&(m&1)); mod = m; N2 = mod; for(int i=0; i<5; i++) N2 *= 2-N2*mod; Rsq = (-u128(mod))%mod; } //reduce = T*R^-1modNを求める. u64 reduce(const u128 &T){ //T*R^-1≡(T+(T*(-N2))modR*N)/R 2N未満なので-N必要かだけで良い. u64 ret = (T+u128(((u64)T)*(-N2))*mod)>>64; if(ret >= mod) ret -= mod; return ret; } //初期値reduce(R^2)でok. Montgomery(){v = 0;} Montgomery(long long w):v(reduce(u128(w)*Rsq)){} Montgomery& operator=(const Montgomery &b) = default; Montgomery operator-()const{return Montgomery()-Montgomery(*this);} Montgomery operator+(const Montgomery &b)const{return Montgomery(*this)+=b;} Montgomery operator-(const Montgomery &b)const{return Montgomery(*this)-=b;} Montgomery operator*(const Montgomery &b)const{return Montgomery(*this)*=b;} Montgomery operator/(const Montgomery &b)const{return Montgomery(*this)/=b;} Montgomery& operator+=(const Montgomery &b){ v += b.v; if(v >= mod) v -= mod; return (*this); } Montgomery& operator-=(const Montgomery &b){ v += mod-b.v; if(v >= mod) v -= mod; return (*this); } Montgomery& operator*=(const Montgomery &b){ v = reduce(u128(v)*b.v); return (*this); } Montgomery& operator/=(const Montgomery &b){ (*this) *= b.inv(); return (*this); } Montgomery pow(u64 b)const{ Montgomery ret = 1,p = (*this); while(b){ if(b&1) ret *= p; p *= p; b >>= 1; } return ret; } Montgomery inv()const{return pow(mod-2);} bool operator!=(const Montgomery &b)const{return v!=b.v;} bool operator==(const Montgomery &b)const{return v==b.v;} }; typename Montgomery::u64 Montgomery::mod,Montgomery::N2,Montgomery::Rsq; using mont = Montgomery; bool MillerRabin(long long N,const vector &A){ mont::setmod(N); long long s = __builtin_ctzll(N-1),d = N-1; d >>= s; for(auto &a : A){ if(N <= a) break; mont x = mont(a).pow(d); if(x != 1){ long long t; for(t=0; t long long { if(a == b) return a; long long s = a>b?a-b:b-a; int n = __builtin_ctzll(s); return f(f,s>>n,a>b?b:a); }; return f(f,a>>n,b>>m)<<(n>m?m:n); } template vector PollardsRho(T N,bool first = true){ if(N <= 1) return {}; vector ret; while(N%2 == 0) N >>= 1,ret.push_back(2); if(N == 1) return ret; if(isprime(N)){ ret.push_back(N); return ret; } if(N <= 1024){ for(int i=3; i*i<=N; i++) while(N%i == 0) N /= i,ret.push_back(i); if(N != 1) ret.push_back(N); return ret; } mont::setmod(N); mont one = 1; for(int i=1; i P = PollardsRho(g,false),Q = PollardsRho(N/g,false); for(auto &p : P) ret.push_back(p); for(auto &q : Q) ret.push_back(q); break; } if(first) sort(ret.begin(),ret.end()); return ret; } int main(){ ios_base::sync_with_stdio(false); cin.tie(nullptr); long long N; cin >> N; auto P = PollardsRho(N); if(P.size() >= 3) cout << "YES\n"; else cout << "NO\n"; }