#include using namespace std; #define int long long const int MOD = 998244353; // Compute modular inverse using Fermat's Little Theorem int modinv(int a) { int res = 1, b = MOD - 2; while (b) { if (b & 1) res = res * a % MOD; a = a * a % MOD; b >>= 1; } return res; } int gcd(int a, int b) { while (b) tie(a, b) = make_pair(b, a % b); return a; } int32_t main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vector X(n), Y(n); for (int i = 0; i < n; ++i) cin >> X[i] >> Y[i]; // Use modular arithmetic to keep values small int num = 0; int den = 1; for (int i = 0; i < n; ++i) { int a = X[i]; int b = Y[i]; // num = num * b + a * den; // den = den * b; num = (num * b % MOD + a * den % MOD) % MOD; den = (den * b) % MOD; } // Reduce the final fraction int g = gcd(num, den); num /= g; den /= g; cout << (num % MOD + MOD) % MOD << '\n'; cout << (den % MOD + MOD) % MOD << '\n'; return 0; }