// competitive-verifier: PROBLEM #include #include #include #include #include #include #include template struct Add { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs + rhs; } template static constexpr U f(T lhs, U rhs) { return lhs + rhs; } }; template struct Mul { using value_type = T; static constexpr T id() { return T(1); } static constexpr T op(const T &lhs, const T &rhs) { return lhs * rhs; } template static constexpr U f(T lhs, U rhs) { return lhs * rhs; } }; template struct And { using value_type = T; static constexpr T id() { return std::numeric_limits::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs & rhs; } template static constexpr U f(T lhs, U rhs) { return lhs & rhs; } }; template struct Or { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs | rhs; } template static constexpr U f(T lhs, U rhs) { return lhs | rhs; } }; template struct Xor { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs ^ rhs; } template static constexpr U f(T lhs, U rhs) { return lhs ^ rhs; } }; template struct Min { using value_type = T; static constexpr T id() { return std::numeric_limits::max(); } static constexpr T op(const T &lhs, const T &rhs) { return std::min(lhs, rhs); } template static constexpr U f(T lhs, U rhs) { return std::min((U)lhs, rhs); } }; template struct Max { using value_type = T; static constexpr T id() { return std::numeric_limits::lowest(); } static constexpr T op(const T &lhs, const T &rhs) { return std::max(lhs, rhs); } template static constexpr U f(T lhs, U rhs) { return std::max((U)lhs, rhs); } }; template struct Gcd { using value_type = T; static constexpr T id() { return std::numeric_limits::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Gcd::id() ? rhs : (rhs == Gcd::id() ? lhs : std::gcd(lhs, rhs)); } }; template struct Lcm { using value_type = T; static constexpr T id() { return std::numeric_limits::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Lcm::id() ? rhs : (rhs == Lcm::id() ? lhs : std::lcm(lhs, rhs)); } }; template struct Update { using value_type = T; static constexpr T id() { return std::numeric_limits::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Update::id() ? rhs : lhs; } template static constexpr U f(T lhs, U rhs) { return lhs == Update::id() ? rhs : lhs; } }; template struct Affine { using P = std::pair; using value_type = P; static constexpr P id() { return P(1, 0); } static constexpr P op(P lhs, P rhs) { return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second}; } }; template struct Rev { using T = typename M::value_type; using value_type = T; static constexpr T id() { return M::id(); } static constexpr T op(T lhs, T rhs) { return M::op(rhs, lhs); } }; /// @brief 双対セグメント木 template struct dual_segment_tree { private: using T = typename M::value_type; public: dual_segment_tree() : dual_segment_tree(0) {} explicit dual_segment_tree(int n, T e = M::id()) : dual_segment_tree(std::vector(n, e)) {} template explicit dual_segment_tree(const std::vector &v) : _n(v.size()) { _size = std::bit_ceil(_n); _log = std::countr_zero(_size); data = std::vector(_size << 1, M::id()); for (int i = 0; i < _n; ++i) data[_size + i] = T(v[i]); } T at(int k) { return get(k); } T get(int k) { assert(0 <= k && k < _n); k += _size; for (int i = _log; i >= 1; --i) push(k >> i); return data[k]; } void apply(int a, T val) { apply(a, a + 1, val); } void apply(int a, int b, T val) { assert(0 <= a && a <= _n); assert(0 <= b && b <= _n); a += _size, b += _size; for (int i = _log; i >= 1; --i) { if (((a >> i) << i) != a) push(a >> i); if (((b >> i) << i) != b) push((b - 1) >> i); } for (; a < b; a >>= 1, b >>= 1) { if (a & 1) all_apply(a++, val); if (b & 1) all_apply(--b, val); } } private: int _n, _size, _log; std::vector data; void all_apply(int k, T val) { data[k] = M::op(val, data[k]); } void push(int k) { all_apply(2 * k, data[k]); all_apply(2 * k + 1, data[k]); data[k] = M::id(); } }; /// @brief セグメント木 /// @see https://noshi91.hatenablog.com/entry/2020/04/22/212649 template struct segment_tree { private: using T = typename M::value_type; struct _segment_tree_reference { private: segment_tree &self; int k; public: _segment_tree_reference(segment_tree &self, int k) : self(self), k(k) {} _segment_tree_reference &operator=(const T &x) { self.set(k, x); return *this; } _segment_tree_reference &operator=(T &&x) { self.set(k, std::move(x)); return *this; } operator T() const { return self.get(k); } }; public: segment_tree() : segment_tree(0) {} explicit segment_tree(int n, T e = M::id()) : segment_tree(std::vector(n, e)) {} template explicit segment_tree(const std::vector &v) : _n(v.size()) { _size = std::bit_ceil(_n); _log = std::countr_zero(_size); data = std::vector(_size << 1, M::id()); for (int i = 0; i < _n; ++i) data[_size + i] = T(v[i]); for (int i = _size - 1; i >= 1; --i) update(i); } const T &operator[](int k) const { return data[k + _size]; } _segment_tree_reference operator[](int k) { return _segment_tree_reference(*this, k); } T at(int k) const { return data[k + _size]; } T get(int k) const { return data[k + _size]; } void set(int k, T val) { assert(0 <= k && k < _n); k += _size; data[k] = val; for (int i = 1; i <= _log; ++i) update(k >> i); } void reset(int k) { set(k, M::id()); } T all_prod() const { return data[1]; } T prod(int a, int b) const { assert(0 <= a && b <= _n); T l = M::id(), r = M::id(); for (a += _size, b += _size; a < b; a >>= 1, b >>= 1) { if (a & 1) l = M::op(l, data[a++]); if (b & 1) r = M::op(data[--b], r); } return M::op(l, r); } template int max_right(F f) const { return max_right(0, f); } template int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(M::id())); if (l == _n) return _n; l += _size; T sm = M::id(); do { while (l % 2 == 0) l >>= 1; if (!f(M::op(sm, data[l]))) { while (l < _size) { l = (2 * l); if (f(M::op(sm, data[l]))) { sm = M::op(sm, data[l]); l++; } } return l - _size; } sm = M::op(sm, data[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(F f) const { return min_left(_n, f); } template int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(M::id())); if (r == 0) return 0; r += _size; T sm = M::id(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(M::op(data[r], sm))) { while (r < _size) { r = (2 * r + 1); if (f(M::op(data[r], sm))) { sm = M::op(data[r], sm); r--; } } return r + 1 - _size; } sm = M::op(data[r], sm); } while ((r & -r) != r); return 0; } private: int _n, _size, _log; std::vector data; void update(int k) { data[k] = M::op(data[2 * k], data[2 * k + 1]); } }; #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template std::istream &operator>>(std::istream &is, std::pair &p) { return is >> p.first >> p.second; } template std::istream &operator>>(std::istream &is, std::vector &v) { for (T &i : v) is >> i; return is; } template std::ostream &operator<<(std::ostream &os, const std::pair &p) { return os << '(' << p.first << ',' << p.second << ')'; } template std::ostream &operator<<(std::ostream &os, const std::vector &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward(tail)...); } template void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } int main(void) { int n, q; cin >> n >> q; vector> a(q); for (auto &[x, y, z] : a) cin >> x >> y >> z; sort(all(a), [&](auto l, auto r) { return get<2>(l) < get<2>(r); }); dual_segment_tree> dst(n); dst.apply(0, n, 1000000000); for (auto [x, y, z] : a) { dst.apply(x - 1, y, z); } vector v(n); rep (i, n) v[i] = dst.get(i); segment_tree> st(v); for (auto [x, y, z] : a) { if (st.prod(x - 1, y) != z) { co(-1); return 0; } } co(v); return 0; }