#include #include //小数点出力用 //cout << fixed << setprecision(10) << ans; #include #include #include #include #include #include #include #include using ll = long long; using namespace std; #define modPHash (ll)((1LL<<61)-1) #define modP (ll)998244353 bool chkrng0idx(int pos, int sup) { return (0 <= pos && pos < sup); } int clk4(int num) { return (num - 2) * (num % 2); } void yn(bool tf) { cout << (tf ? "Yes\n" : "No\n"); } using ll = long long; vector> mul(vector>& A, vector>& B, int size) { vector>res; for (int i = 0;i < size;i++) { vectorrow; for (int j = 0;j < size;j++) { ll tmp = 0; for (int k = 0;k < size;k++) { tmp += A[i][k] * B[k][j]; tmp %= 998244353; } row.push_back(tmp); } res.push_back(row); } return res; } int main() { int K; cin >> K; ll L, R; cin >> L >> R; if (R == 0) { cout << 1; return 0; } vector>M[64]; vectorU; for (int i = 0;i <= K;i++) { M[0].push_back(U); M[0][i].push_back(1); for (int j = 1;j <= i;j++) { M[0][i].push_back((M[0][i - 1][j - 1] + M[0][i - 1][j]) % 998244353); } for (int j = i + 1;j < K + 4;j++) { M[0][i].push_back(0); } } for (int i = K + 1;i < K + 4;i++) { M[0].push_back(U); for (int j = 0;j < K + 4;j++) { M[0][i].push_back(0); } } M[0][K + 1][K + 1] = K; M[0][K + 2][K] = 1; M[0][K + 2][K + 1] = 1; M[0][K + 2][K + 2] = K; M[0][K + 3][K] = 1; M[0][K + 3][K + 1] = 1; M[0][K + 3][K + 2] = K; M[0][K + 3][K + 3] = 1; for (int i = 1;i < 64;i++) { M[i] = mul(M[i - 1], M[i - 1], K + 4); } vector>E, tmp; for (int i = 0;i < K + 4;i++) { E.push_back(U); for (int j = 0;j < K + 4;j++) { E[i].push_back(0); } E[i][i] = 1; } tmp = E; for (int i = 0;i < 64;i++) { if ((R >> i) & 1) { tmp = mul(tmp, M[i], K + 4); } } if (L == 0) { cout << (tmp[K + 3][0] + tmp[K + 3][K + 1] + tmp[K + 3][K + 2] + tmp[K + 3][K + 3]) % 998244353; return 0; } ll ans = (tmp[K + 3][0] + tmp[K + 3][K + 1] + tmp[K + 3][K + 2] + tmp[K + 3][K + 3]) % 998244353 + 998244353; tmp = E; for (int i = 0;i < 64;i++) { if (((L - 1LL) >> i) & 1) { tmp = mul(tmp, M[i], K + 4); } } cout << (ans - (tmp[K + 3][0] + tmp[K + 3][K + 1] + tmp[K + 3][K + 2] + tmp[K + 3][K + 3]) % 998244353) % 998244353; return 0; }