pub trait SortD{ fn sort_d(&mut self); } impl SortD for Vec{ fn sort_d(&mut self) { self.sort_by(|u, v| v.cmp(&u)); } } pub trait Mx{fn max(&self, rhs: Self)->Self;} impl Mx for f64{ fn max(&self, rhs: Self)->Self{if *self < rhs{ rhs } else { *self } }} pub trait Mi{ fn min(&self, rhs: Self)->Self; } impl Mi for f64{ fn min(&self, rhs: Self)->Self{ if *self < rhs{ rhs } else { *self } } } pub fn chmax(a: &mut T, b: &T){ if *a < *b{ *a = b.clone(); } } pub fn chmin(a: &mut T, b: &T){ if *a > *b{ *a = b.clone(); } } pub fn gcd(mut a: i64, mut b: i64)->i64{ if b==0{return a;}while b!=0{ let c = a;a = b;b = c%b; }a } pub fn factorial_i64(n: usize)->(Vec, Vec){ let mut res = vec![1; n+1];let mut inv = vec![1; n+1];for i in 0..n{ res[i+1] = (res[i]*(i+1)as i64)%MOD; }inv[n] = mod_inverse(res[n], MOD);for i in (0..n).rev(){ inv[i] = inv[i+1]*(i+1) as i64%MOD; }(res, inv) } pub fn floor(a:i64, b:i64)->i64{let res=(a%b+b)%b;(a-res)/b} pub fn extended_gcd(a:i64,b:i64)->(i64,i64,i64) {if b==0{(a,1,0)}else{let(g,x,y)=extended_gcd(b,a%b);(g,y,x-floor(a,b)*y)}} pub fn mod_inverse(a:i64,m:i64)->i64{let(_,x,_) =extended_gcd(a,m);(x%m+m)%m} pub fn comb(a: i64, b: i64, f: &Vec<(i64, i64)>)->i64{ if aVec<(i64, i64)>{ let mut f=vec![(1i64,1i64),(1, 1)];let mut z = 1i64; let mut inv = vec![0; x as usize+10];inv[1] = 1; for i in 2..x+1{z=(z*i)%MOD; let w=(MOD-inv[(MOD%i)as usize]*(MOD/i)%MOD)%MOD; inv[i as usize] = w; f.push((z, (f[i as usize-1].1*w)%MOD));}return f;} pub fn fast_mod_pow(x: i64,p: usize, m: i64)->i64{ let mut res=1;let mut t=x;let mut z=p;while z > 0{ if z%2==1{res = (res*t)%m;}t = (t*t)%m;z /= 2; }res} #[allow(unused_imports)] use std::{ convert::{Infallible, TryFrom, TryInto as _}, fmt::{self, Debug, Display, Formatter,}, fs::{File}, hash::{Hash, Hasher}, iter::{Product, Sum}, marker::PhantomData, ops::{Add, AddAssign, Sub, SubAssign, Div, DivAssign, Mul, MulAssign, Neg, RangeBounds}, str::FromStr, sync::{atomic::{self, AtomicU32, AtomicU64}, Once}, collections::{*, btree_set::Range, btree_map::Range as BTreeRange}, mem::{swap}, cmp::{self, Reverse, Ordering, Eq, PartialEq, PartialOrd}, thread::LocalKey, f64::consts::PI, time::Instant, cell::RefCell, io::{self, stdin, Read, read_to_string, BufWriter, BufReader, stdout, Write}, }; #[allow(unused_imports)] use proconio::{input, input_interactive, marker::{*}}; #[allow(unused_imports)] //use rand::{thread_rng, Rng, seq::SliceRandom}; #[allow(unused_imports)] //use ac_library::{*, ModInt998244353 as mint}; #[allow(dead_code)] //type MI = StaticModInt;pub fn factorial_mint(n: usize)->(Vec, Vec){ let mut res = vec![mint::new(1); n+1];let mut inv = vec![mint::new(1); n+1];for i in 0..n{res[i+1] = res[i]*(i+1);}inv[n] = mint::new(1)/res[n];for i in (0..n).rev(){inv[i] = inv[i+1]*(i+1);}(res, inv)} #[allow(dead_code)] const INF: i64 = 1<<60; #[allow(dead_code)] const MOD: i64 = 998244353; #[allow(dead_code)] const D: [(usize, usize); 4] = [(1, 0), (0, 1), (!0, 0), (0, !0)]; #[allow(dead_code)] const D2: [(usize, usize); 8] = [(1, 0), (1, 1), (0, 1), (!0, 1), (!0, 0), (!0, !0), (0, !0), (1, !0)]; // 逆元あり pub trait SqrtDecomposition{ type S: Clone; type T: Clone; fn identity()->Self::S; fn op(a: &Self::S, b: &Self::S)->Self::S; fn inv(a: &Self::S)->Self::S; } pub struct SqrtDecompositionData where M: SqrtDecomposition{ b: usize, data: Vec, block: Vec, } impl SqrtDecompositionData where M: SqrtDecomposition{ pub fn new(n: usize, q: usize)->Self{ let b = ((n as f64/(q as f64).sqrt()).ceil() as usize).max(1); SqrtDecompositionData{ b, data: vec![M::identity(); n], block: vec![M::identity(); (n+b-1)/b], } } pub fn from(a: &Vec, q: usize)->Self{ let b = ((a.len() as f64/(q as f64).sqrt()).ceil() as usize).max(1); let data = a.clone(); let mut block = vec![M::identity(); (a.len()+b-1)/b]; for (i, v) in a.iter().enumerate(){ block[i/b] = M::op(&block[i/b], v); } SqrtDecompositionData{ b, data, block } } pub fn set(&mut self, p: usize, x: &M::S){ self.block[p/self.b] = M::op(&self.block[p/self.b], &M::inv(&self.data[p])); self.data[p] = x.clone(); self.block[p/self.b] = M::op(&self.block[p/self.b], &x); } pub fn set_both(&mut self, p: usize, x: &M::S, b: &M::S){ self.data[p] = x.clone(); self.block[p/self.b] = b.clone(); } pub fn get(&self, p: usize)->M::S{ self.data[p].clone() } pub fn get_b(&self, p: usize)->M::S{ self.block[p/self.b].clone() } pub fn prod(&self, l: usize, r: usize)->M::S{ let (bl, br) = ((l + self.b - 1) / self.b, r / self.b); if bl >= br{ let mut res = M::identity(); for i in l..r{ res = M::op(&res, &self.data[i]); } res } else { let mut res = M::identity(); for i in l..bl * self.b { res = M::op(&res, &self.data[i]); } for i in bl..br { res = M::op(&res, &self.block[i]); } for i in self.b * br..r { res = M::op(&res, &self.data[i]); } res } } } pub trait RollbackMoMonoid{ type S: Clone; type T; type U; type V: Clone; type X: Clone+Default; fn init_t(n: usize, q: usize, a: &Vec, b: &Self::U)->Self::T; fn increase(t: &mut Self::T, s: &Self::S); fn snapshot(t: &mut Self::T); fn rollback(t: &mut Self::T); fn get(t: &Self::T, x: &Self::V)->Self::X; } pub fn solve_rollback_mo(a: Vec, x: &M::U, query: Vec<(usize, usize, M::V)>)->Vec where M: RollbackMoMonoid{ let (n, q) = (a.len(), query.len()); let b = ((n as f64).sqrt() as usize).max(1); let mut ans = vec![M::X::default(); q]; let mut qs = vec![Vec::new(); (n+b-1)/b]; let mut t = M::init_t(n, q, &a, x); for (idx, (l, r, z)) in query.iter().enumerate(){ let (bl, br) = ((*l+b-1)/b, *r/b); if bl >= br{ for i in *l..*r{ M::increase(&mut t, &a[i]); } ans[idx] = M::get(&t, z); M::rollback(&mut t); } else { qs[bl].push((*r, *l, z.clone(), idx)); } } for i in 0..qs.len(){ qs[i].sort_by(|u, v| u.0.cmp(&v.0)); let st = (i+1)*b; let mut right = st; t = M::init_t(n, q, &a, x); for (r, l, z, idx) in &qs[i]{ while right < *r{ M::increase(&mut t, &a[right]); right += 1; } M::snapshot(&mut t); for i in (*l..st).rev(){ M::increase(&mut t, &a[i]); } ans[*idx] = M::get(&mut t, z); M::rollback(&mut t); } } ans } struct SqMonoid; impl SqrtDecomposition for SqMonoid{ type S = i64; type T = i64; fn identity() -> Self::S { 0 } fn op(&a: &Self::S, &b: &Self::S) -> Self::S { a+b } fn inv(&a: &Self::S) -> Self::S { -a } } struct T{ sq: SqrtDecompositionData, hist: Vec<(usize, i64, i64)>, } struct MM; impl RollbackMoMonoid for MM{ type S = (usize, i64); type T = T; type U = Vec; type V = (usize, usize); type X = i64; fn init_t(_: usize, q: usize, _: &Vec, b: &Self::U) -> Self::T { T{ sq: SqrtDecompositionData::::from(b, q), hist: Vec::new(), } } fn increase(t: &mut Self::T, &s: &Self::S) { let (p, x) = s; let px = t.sq.get(p); let pb = t.sq.get_b(p); t.hist.push((p, px, pb)); t.sq.set(p, &x.max(px)); } fn snapshot(t: &mut Self::T) { t.hist.clear() } fn rollback(t: &mut Self::T) { while let Some((p, px, pb)) = t.hist.pop(){ t.sq.set_both(p, &px, &pb); } } fn get(t: &Self::T, &z: &Self::V) -> Self::X { let (l, r) = z; t.sq.prod(l, r) } } //use proconio::fastout; //#[fastout] fn main(){ input!{ n: usize, k: usize, q: usize, a: [i64; n], op: [(Usize1, i64); k], query: [(Usize1, usize, Usize1, usize); q], } for x in solve(a, op, query){ println!("{}", x); } } fn solve(a: Vec, op: Vec<(usize, i64)>, query: Vec<(usize, usize, usize, usize)>)->Vec{ let qs = query.into_iter().map(|(l, r, d, u)| (l, r, (d, u))).collect::>(); solve_rollback_mo::(op, &a, qs) } /* fn main() { let mut rng = thread_rng(); for _ in 0..100{ let (n, k, q) = (rng.gen_range(1..500), rng.gen_range(1..500), rng.gen_range(1..500)); let mut a = Vec::new(); for _ in 0..n{ a.push(rng.gen_range(1..=1000000000)); } let mut op = Vec::new(); for _ in 0..k{ op.push((rng.gen_range(0..n), rng.gen_range(1..=1000000000))) } let mut query = Vec::new(); for _ in 0..q{ let (mut l, mut r) = (rng.gen_range(1..=k), rng.gen_range(1..=k)); (l, r) = (l.min(r), l.max(r)); let (mut d, mut u) = (rng.gen_range(1..=n), rng.gen_range(1..=n)); (d, u) = (d.min(u), d.max(u)); query.push((l-1, r, d-1, u)); } assert_eq!(solve(a.clone(), op.clone(), query.clone()), naive(a.clone(), op.clone(), query.clone())); } } fn naive(a: Vec, op: Vec<(usize, i64)>, query: Vec<(usize, usize, usize, usize)>)->Vec{ let mut ans = vec![0; query.len()]; for (idx, &(l, r, d, u)) in query.iter().enumerate(){ let mut b = a.clone(); for i in l..r{ let (p, x) = op[i]; b[p] = b[p].max(x); } let mut res = 0; for i in d..u{ res += b[i]; } ans[idx] = res; } ans } */