import sys from math import gcd def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a % b) return (g, y, x - (a // b) * y) def main(): N = int(sys.stdin.readline()) M = int(sys.stdin.readline()) congruences = [] for _ in range(M): B, C = map(int, sys.stdin.readline().split()) congruences.append((B, C)) current_mod = 1 current_rem = 0 has_solution = True for B, C in congruences: c = C % B d = gcd(current_mod, B) if (current_rem - c) % d != 0: has_solution = False break m1 = current_mod a = current_rem m2 = B b = c g, x, y = extended_gcd(m1 // d, m2 // d) k0 = ((b - a) // d) * x % (m2 // d) new_rem = a + k0 * m1 new_mod = (m1 * m2) // d new_rem %= new_mod current_rem = new_rem current_mod = new_mod if not has_solution: print("NaN") else: print(current_rem if current_rem <= N else "NaN") if __name__ == "__main__": main()