import math def modinv(a, mod): g, x, y = extended_gcd(a, mod) if g != 1: return None else: return x % mod def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a % b) return (g, y, x - (a // b) * y) def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 congruences = [] for _ in range(M): B = int(input[ptr]) C = int(input[ptr + 1]) ptr += 2 congruences.append((B, C)) current_a = 0 current_m = 1 for B, C in congruences: # Compute normalized C mod B c = (C % B + B) % B # Merge current_a mod current_m with c mod B g = math.gcd(current_m, B) if (c - current_a) % g != 0: print("NaN") return # Compute LCM lcm = current_m // g * B m_div = current_m // g B_div = B // g rhs = (c - current_a) // g inv = modinv(m_div, B_div) if inv is None: print("NaN") return k = (rhs * inv) % B_div new_a = current_a + k * current_m current_a = new_a % lcm current_m = lcm if current_a <= N: print(current_a) else: print("NaN") if __name__ == "__main__": main()