MOD = 998244353 max_k = 5000 max_r = 205000 # 2e5 + 5e3 = 205000 # Precompute factorials and inverse factorials fact = [1] * (max_r + 1) for i in range(1, max_r + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_r + 1) inv_fact[max_r] = pow(fact[max_r], MOD-2, MOD) for i in range(max_r - 1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i + 1) % MOD # Precompute Stirling numbers of the second kind stirling = [[0] * (max_k + 1) for _ in range(max_k + 1)] stirling[0][0] = 1 for k in range(1, max_k + 1): for m in range(1, k + 1): stirling[k][m] = (m * stirling[k-1][m] + stirling[k-1][m-1]) % MOD def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 K_list = list(map(int, input[ptr:ptr+N])) ptr += N n_mod = (M + N) % MOD R_max = N + 5000 if R_max > max_r: R_max = max_r # Precompute falling factorial for this test case falling = [0] * (R_max + 1) falling[0] = 1 for r in range(1, R_max + 1): term = (n_mod - (r - 1)) % MOD falling[r] = falling[r-1] * term % MOD ans = 0 for K in K_list: current_sum = 0 for m in range(0, K + 1): s = stirling[K][m] if s == 0: continue term = s * fact[m] % MOD r = N + m if r > R_max: continue if r < 0: continue c = falling[r] * inv_fact[r] % MOD current_sum = (current_sum + term * c) % MOD ans = (ans + current_sum) % MOD print(ans % MOD) if __name__ == '__main__': main()