import bisect def merge_intervals(cards): intervals = [] for a in cards: start = a * a end = (a + 1) * (a + 1) - 1 if intervals and intervals[-1][1] >= start - 1: prev_start, prev_end = intervals.pop() new_start = prev_start new_end = max(prev_end, end) intervals.append((new_start, new_end)) else: intervals.append((start, end)) return intervals def is_in_intervals(x, intervals): starts = [interval[0] for interval in intervals] idx = bisect.bisect_right(starts, x) - 1 if idx >= 0: s, e = intervals[idx] if s <= x <= e: return True return False def find_min_non_representable(A_intervals, B_intervals): max_A = max(end for start, end in A_intervals) max_B = max(end for start, end in B_intervals) min_A = A_intervals[0][0] min_B = B_intervals[0][0] min_product = min_A * min_B if min_product > 1: if not is_in_intervals(1, A_intervals) or not is_in_intervals(1, B_intervals): return 1 k = 1 while True: found = False divisors = set() sqrt_k = int(k ** 0.5) for i in range(1, sqrt_k + 1): if k % i == 0: d1 = i d2 = k // i if d1 <= max_A and d2 <= max_B: divisors.add(d1) if d2 <= max_A and d1 <= max_B and d1 != d2: divisors.add(d2) for d in divisors: if is_in_intervals(d, A_intervals) and is_in_intervals(k // d, B_intervals): found = True break if not found: return k k += 1 def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 A = list(map(int, input[ptr:ptr+N])) ptr += N B = list(map(int, input[ptr:ptr+M])) ptr += M A_intervals = merge_intervals(A) B_intervals = merge_intervals(B) print(find_min_non_representable(A_intervals, B_intervals)) if __name__ == "__main__": main()