MOD = 10**9 + 7 def main(): import sys input = sys.stdin.read().split() N = int(input[0]) A = list(map(int, input[1:N+1])) # Find the minimum value sorted_A = sorted(A) min_val = None K = 200 for i in range(min(K, len(sorted_A))): for j in range(i + 1, min(K, len(sorted_A))): a = sorted_A[i] b = sorted_A[j] current = (a + b) * pow(a, b, MOD * 1000) # Use a large mod to avoid overflow if min_val is None or current < min_val: min_val = current # Now compute the product_part1 (product of (A_i + A_j) for all i i)) sum_suffix = [0] * (N + 1) for i in range(N-1, -1, -1): sum_suffix[i] = (sum_suffix[i+1] + A[i]) % (MOD-1) product_part2 = 1 for i in range(N): a = A[i] exponent = sum_suffix[i+1] if a == 0: product_part2 = 0 break if a % MOD == 0: product_part2 = 0 break product_part2 = product_part2 * pow(a, exponent, MOD) % MOD total_product = product_part1 * product_part2 % MOD # Compute inverse of min_val modulo MOD min_val_mod = min_val % MOD if min_val_mod == 0: print(0) return inv_min_val = pow(min_val_mod, MOD-2, MOD) answer = total_product * inv_min_val % MOD print(answer) if __name__ == '__main__': main()