import math def mod_inverse(a, m): g, x, y = extended_gcd(a, m) if g != 1: return None else: return x % m def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a % b) return (g, y, x - (a // b) * y) def merge(a1, m1, a2, m2): d = a2 - a1 g = math.gcd(m1, m2) if d % g != 0: return None m = m1 // g n = m2 // g inv_m = mod_inverse(m, n) if inv_m is None: return None k0 = ((d // g) * inv_m) % n new_a = a1 + k0 * m1 new_mod = m1 * m2 // g new_a = new_a % new_mod return (new_a, new_mod) def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 conditions = [] for _ in range(M): B = int(input[ptr]) C = int(input[ptr + 1]) ptr += 2 a = C % B conditions.append((B, a)) current_a = 0 current_mod = 1 for (B, a) in conditions: res = merge(current_a, current_mod, a, B) if res is None: print("NaN") return current_a, current_mod = res r = current_a % current_mod if r <= N: print(r) else: print("NaN") if __name__ == "__main__": main()