n, V, C = map(int, input().split()) items = [] for _ in range(n): v, w = map(int, input().split()) items.append((v, w)) # Sort items by v ascending, then by w descending to maximize sum_w when v is the same items.sort(key=lambda x: (x[0], -x[1])) # Precompute cumulative sums of v and w cum_v = [0] * (n + 1) cum_w = [0] * (n + 1) for i in range(n): cum_v[i + 1] = cum_v[i] + items[i][0] cum_w[i + 1] = cum_w[i] + items[i][1] # Precompute the most efficient item (max w/v) for each k max_eff = [(0, 0)] * (n + 1) # (v, w) for k in range(1, n + 1): if k == 1: current_v, current_w = items[0] max_eff[k] = (current_v, current_w) else: prev_v, prev_w = max_eff[k - 1] current_v, current_w = items[k - 1] # Compare current item with previous max_eff current_eff_num = current_w * prev_v prev_eff_num = prev_w * current_v if current_eff_num > prev_eff_num: max_eff[k] = (current_v, current_w) elif current_eff_num < prev_eff_num: max_eff[k] = (prev_v, prev_w) else: # Same efficiency, choose smaller v if current_v < prev_v: max_eff[k] = (current_v, current_w) elif current_v > prev_v: max_eff[k] = (prev_v, prev_w) else: # Same v, choose higher w if current_w > prev_w: max_eff[k] = (current_v, current_w) else: max_eff[k] = (prev_v, prev_w) max_satisfaction = 0 for k in range(1, n + 1): if cum_v[k] > V: continue rem = V - cum_v[k] best_v, best_w = max_eff[k] if best_v == 0: continue # avoid division by zero, though v >=1 per constraints cnt = rem // best_v total_w = cum_w[k] + cnt * best_w satisfaction = k * C + total_w if satisfaction > max_satisfaction: max_satisfaction = satisfaction print(max_satisfaction)