#include using namespace std; //#pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; //const ll dy[9]={1,0,-1,0,1,1,-1,-1,0}; //const ll dx[9]={0,1,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } //中国剰余定理 // 返り値: a と b の最大公約数 // ax + by = gcd(a, b) を満たす (x, y) が格納される long long extGcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGcd(b, a%b, y, x); y -= a/b * x; return d; } //-1が帰ってくる可能性に注意 pair ChineseRem(const vector &b, const vector &m) { long long r = 0, M = 1; for (int i = 0; i < (int)b.size(); ++i) { long long p, q; long long d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d) if ((b[i] - r) % d != 0) return make_pair(0, -1); long long tmp = (b[i] - r) / d * p % (m[i]/d); r += M * tmp; M *= m[i]/d; } return make_pair((r+M+M)%M, M); } int main(){ ll n,p,q,r,a,b,c;cin >> n >> p >> q >> r >> a >> b >> c; auto [s,t]=ChineseRem({a,b,c},{p,q,r}); //cout << s <<" " << t << endl; cout << (n-s)/t+1 << endl; }