def inv_gcd(a,b): a=a%b if a==0: return (b,0) s=b;t=a m0=0;m1=1 while(t): u=s//t s-=t*u m0-=m1*u s,t=t,s m0,m1=m1,m0 if m0<0: m0+=b//s return (s,m0) def inv_mod(x,m): assert 1<=m z=inv_gcd(x,m) assert z[0]==1 return z[1] def crt(r,m): assert len(r)==len(m) n=len(r) r0=0;m0=1 for i in range(n): assert 1<=m[i] r1=r[i]%m[i] m1=m[i] if m0= m: k = a // m a = a % m if a < 0: a += m k -= 1 ans += k * n * (n - 1) // 2 if b < 0 or b >= m: k = b // m b = b % m if b < 0: b += m k -= 1 ans += k * n y_max = (a * n + b) // m if y_max == 0: break x_max = y_max * m - b ans += (n - (x_max + a - 1) // a) * y_max n, m, a, b = y_max, a, m, (a - x_max % a) % a return ans N = int(input()) P, Q, R = map(int, input().split()) A, B, C = map(int, input().split()) m, g = crt([A, B, C], [P, Q, R]) print(N // g if N % g < m else N // g + 1)