#include using namespace std; //#pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; //const ll dy[9]={1,0,-1,0,1,1,-1,-1,0}; //const ll dx[9]={0,1,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } //実行時modint ll mod; int max_n = 200005; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() { return mint(-x);} mint& operator+=( mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=( mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=( mint a) { (x *= a.x) %= mod; return *this;} mint operator+( mint a) { return mint(*this) += a;} mint operator-( mint a) { return mint(*this) -= a;} mint operator*( mint a) { return mint(*this) *= a;} mint pow(ll t) { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } bool operator==( mint &p) { return x == p.x; } bool operator!=( mint &p) { return x != p.x; } // for prime mod mint inv() { return pow(mod-2);} mint& operator/=(mint a) { return *this *= a.inv();} mint operator/( mint a) { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, mint& a) { return os << a.x;} using vm=vector; using vvm=vector; //https://atcoder.jp/contests/abc230/submissions/44985883 vector> quotient_floors(ll n){ //floor(n/i)=xを満たすx,i∈[l,r)をこの順に返す。lの昇順、つまりxの降順なことに注意。 vector> ret; for(ll l=1;l<=n;){ ll x=n/l; ll r=n/x+1; ret.emplace_back(x,l,r); l=r; } return ret; } struct osak{ vector lpf;// least prime factor vector prime;// prime table osak(long long n){//linear_sieve lpf=vector(n+1,-1); for (int d = 2; d <= n; ++d) { if(lpf[d]==-1){ lpf[d]=d;prime.emplace_back(d); } for(auto p:prime){ if(p*d>n||p>lpf[d])break; lpf[p*d]=p; } } } map factor(int n) { map factor; while (n > 1) { factor[lpf[n]]++; n /= lpf[n]; } return factor; } vector divisor(int N){//O(div.size()) map facs=factor(N); vector ret={1}; for(auto p:facs){ ll range=ret.size(); ll now=1; for(int i=0;i> n >> mod; //for(auto [p,q,r]:quotient_floors(99))cout << p <<" " << q <<" " << r << endl; vm ans(n+1); osak os(300010); vvm dp(n+1); for(ll i=1;i<=n;i++){ rep(_,n/i+5)dp[i].emplace_back(0); } for(ll i=3;i<=n;i++){ mint sum=1; mint cof=1; mint inv=mint(i).inv(); for(auto x:os.divisor(i)){ dp[x][i/x+1]=dp[x][i/x]; cof-=inv; } for(auto [x,y,z]:quotient_floors(i)){ sum+=(dp[x][z]-dp[x][y])/i; } ans[i]=sum/cof; //cout << sum <<" " << cof << endl; for(auto x:os.divisor(i)){ dp[x][i/x+1]+=ans[i]; } } cout << ans.back() << endl; }