#include using namespace std; //#pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; //const ll dy[9]={1,0,-1,0,1,1,-1,-1,0}; //const ll dx[9]={0,1,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } //https://atcoder.jp/contests/abc230/submissions/44985883 vector> quotient_floors(ll n){ //floor(n/i)=xを満たすx,i∈[l,r)をこの順に返す。lの昇順、つまりxの降順なことに注意。 vector> ret; for(ll l=1;l<=n;){ ll x=n/l; ll r=n/x+1; ret.emplace_back(x,l,r); l=r; } return ret; } struct osak{ vector lpf;// least prime factor vector prime;// prime table osak(long long n){//linear_sieve lpf=vector(n+1,-1); for (int d = 2; d <= n; ++d) { if(lpf[d]==-1){ lpf[d]=d;prime.emplace_back(d); } for(auto p:prime){ if(p*d>n||p>lpf[d])break; lpf[p*d]=p; } } } map factor(int n) { map factor; while (n > 1) { factor[lpf[n]]++; n /= lpf[n]; } return factor; } vector divisor(int N){//O(div.size()) map facs=factor(N); vector ret={1}; for(auto p:facs){ ll range=ret.size(); ll now=1; for(int i=0;i 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } int main(){ ll n,p;cin >> n >> p; //for(auto [p,q,r]:quotient_floors(99))cout << p <<" " << q <<" " << r << endl; vl ans(n+1); //osak os(300010); vvl divs(300010); for(ll i=1;i<=n;i++){ for(ll j=i;j<=n;j+=i){ divs[j].emplace_back(i); } } vvl dp(n+1); for(ll i=1;i<=n;i++){ rep(_,n/i+5)dp[i].emplace_back(0); } for(ll i=3;i<=n;i++){ ll sum=1; ll cof=1; ll inv=modpow(i,p-2,p); for(auto x:divs[i]){ dp[x][i/x+1]=dp[x][i/x]; cof=(cof-inv+p)%p; } for(auto [x,y,z]:quotient_floors(i)){ sum+=(dp[x][z]-dp[x][y]+p)%p*inv; sum%=p; } ans[i]=sum*modpow(cof,p-2,p)%p; //cout << sum <<" " << cof << endl; for(auto x:divs[i]){ dp[x][i/x+1]=(dp[x][i/x+1]+ans[i])%p; } } cout << ans.back() << endl; }