class Eratosthenes: def __init__(self, n): self.isPrime = [True]*(n+1) self.minfactor = [-1]*(n+1) self.isPrime[0], self.isPrime[1] = False, False self.minfactor[1] = 1 for i in range(2, n+1): if self.isPrime[i]: self.minfactor[i] = i for j in range(i*2, n+1, i): self.isPrime[j] = False if self.minfactor[j] == -1: self.minfactor[j] = i def factorize(self, n): factor = [] while n > 1: p = self.minfactor[n] cnt = 0 while self.minfactor[n] == p: n //= p cnt += 1 factor.append((p, cnt)) return factor def divisor(self, n): ans = [1] pf = self.factorize(n) for p, c in pf: L = len(ans) for i in range(L): v = 1 for _ in range(c): v *= p ans.append(ans[i]*v) return ans N, P = map(int, input().split()) MOD = P def inverse(n, d): return n * pow(d, -1, MOD) % MOD E = Eratosthenes(N) dp = [0]*(N+1) imos = [0]*(N+2) for i in range(2, N+1): imos[i] += imos[i-1] imos[i] %= MOD dp[i] = imos[i] div = E.divisor(i) if 3 <= i: dp[i] = inverse(dp[i], i-len(div)) dp[i] += inverse(i, i-len(div))%MOD dp[i] %= MOD if i == N: break for d in div: imos[i+1] += dp[i] imos[i+1] %= MOD imos[min(i+d, N+1)] -= dp[i] imos[min(i+d, N+1)] %= MOD print(dp[-1])