// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] // use core::num; use std::cmp::*; use std::fmt::*; use std::hash::*; use std::io::BufRead; use std::iter::FromIterator; use std::*; use std::{cmp, collections, fmt, io, iter, ops, str}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD1: i64 = 1000000007; const MOD9: i64 = 998244353; const MOD: i64 = MOD9; // const MOD: i64 = MOD2; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // use proconio::input; // const MOD: i64 = INF; use cmp::Ordering::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { //if expr println!("{}", $x); }; } macro_rules! vp { // vector print separate with space ($x:expr) => { println!( "{}", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } macro_rules! d { ($x:expr) => { eprintln!("{:?}", $x); }; } macro_rules! yn { ($val:expr) => { if $val { println!("Yes"); } else { println!("No"); } }; } macro_rules! map{ // declear btreemap ($($key:expr => $val:expr),*) => { { let mut map = ::std::collections::BTreeMap::new(); $( map.insert($key, $val); )* map } }; } macro_rules! set{ // declear btreemap ($($key:expr),*) => { { let mut set = ::std::collections::BTreeSet::new(); $( set.insert($key); )* set } }; } //input output #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } pub mod dinic { #[derive(Clone, Copy, Debug)] struct Edge { to: usize, cap: i64, rev: usize, } pub struct Network { g: Vec>, level: Vec>, iter: Vec, } #[doc = "direct flow graph. O(EV^2)"] impl Network { pub fn new(n: usize) -> Network { Network { g: vec![vec![]; n], level: vec![None; n], iter: vec![0; n], } } pub fn add_edge(&mut self, from: usize, to: usize, cap: i64) { assert!(cap >= 0); let from_rev = self.g[to].len(); let to_rev = self.g[from].len(); self.g[from].push(Edge { to: to, cap: cap, rev: from_rev, }); self.g[to].push(Edge { to: from, cap: 0, rev: to_rev, }); } fn n(&self) -> usize { self.g.len() } fn bfs(&mut self, s: usize) { self.level = vec![None; self.n()]; let mut q = std::collections::VecDeque::new(); q.push_back(s); self.level[s] = Some(0); while let Some(v) = q.pop_front() { for e in &self.g[v] { if e.cap > 0 && self.level[e.to].is_none() { self.level[e.to] = self.level[v].map(|x| x + 1); q.push_back(e.to); } } } } fn dfs(&mut self, v: usize, t: usize, f: i64) -> i64 { if v == t { return f; } let iter_v_cur = self.iter[v]; for i in iter_v_cur..self.g[v].len() { let e = self.g[v][i].clone(); if e.cap > 0 && self.level[v] < self.level[e.to] { let d = self.dfs(e.to, t, std::cmp::min(f, e.cap)); if d > 0 { self.g[v][i].cap -= d; self.g[e.to][e.rev].cap += d; return d; } } self.iter[v] += 1; } return 0; } pub fn max_flow(&mut self, s: usize, t: usize) -> i64 { let mut flow = 0; loop { self.bfs(s); // finally if we could not find any path to t then return flow if self.level[t].is_none() { return flow; } let INF = 2_000_000_001; self.iter = vec![0; self.n()]; let mut f = self.dfs(s, t, INF); while f > 0 { flow += f; f = self.dfs(s, t, INF); } } } } } // #[test] // fn test_dinic() { // use dinic::*; // let mut nw = Network::new(5); // let conns = [ // (0, 1, 10), // (0, 2, 2), // (1, 2, 6), // (1, 3, 6), // (3, 2, 3), // (2, 4, 5), // (3, 4, 8), // ]; // for conn in &conns { // nw.add_edge(conn.0, conn.1, conn.2); // } // assert_eq!(nw.max_flow(0, 4), 11); // } fn main() { let n: usize = read(); let mut p = vec![0i64; n + 1]; let mut pi: Vec = read_vec(); for i in 1..=n { p[i] = pi[i - 1] as i64; // Assuming pi is a vector of usize } let m: usize = read(); let mut deps = Vec::with_capacity(m); for _ in 0..m { let (u, v) = readuu(); deps.push((u, v)); } let k: usize = read(); let mut syn = Vec::with_capacity(k); for _ in 0..k { let mut vec: Vec = read_vec(); let a: usize = vec[0] as usize; let b: usize = vec[1] as usize; let s: i64 = vec[2]; syn.push((a, b, s)); } let s = 0; let t = n + k + 1; let mut mf = dinic::Network::new(t + 1); let mut sum = 0i64; for i in 1..=n { if p[i] > 0 { mf.add_edge(s, i, p[i]); sum += p[i]; } else if p[i] < 0 { mf.add_edge(i, t, -p[i]); } } for (u, v) in deps { mf.add_edge(v, u, INF); } for j in 0..k { let node = n + 1 + j; let (a, b, w) = syn[j]; mf.add_edge(s, node, w); sum += w; mf.add_edge(node, a, INF); mf.add_edge(node, b, INF); } let flow = mf.max_flow(s, t); let ans = sum - flow; p!(ans); }