# Dinic's algorithm from collections import deque class Dinic: def __init__(self, N): self.N = N self.G = [[] for i in range(N)] def add_edge(self, fr, to, cap): forward = [to, cap, None] forward[2] = backward = [fr, 0, forward] self.G[fr].append(forward) self.G[to].append(backward) def add_multi_edge(self, v1, v2, cap1, cap2): edge1 = [v2, cap1, None] edge1[2] = edge2 = [v1, cap2, edge1] self.G[v1].append(edge1) self.G[v2].append(edge2) def bfs(self, s, t): self.level = level = [None]*self.N deq = deque([s]) level[s] = 0 G = self.G while deq: v = deq.popleft() lv = level[v] + 1 for w, cap, _ in G[v]: if cap and level[w] is None: level[w] = lv deq.append(w) return level[t] is not None def dfs(self, v, t, f): if v == t: return f level = self.level for e in self.it[v]: w, cap, rev = e if cap and level[v] < level[w]: d = self.dfs(w, t, min(f, cap)) if d: e[1] -= d rev[1] += d return d return 0 def flow(self, s, t): flow = 0 INF = 10**9 + 7 G = self.G while self.bfs(s, t): *self.it, = map(iter, self.G) f = INF while f: f = self.dfs(s, t, INF) flow += f return flow n = int(input()) P = list(map(int, input().split())) m = int(input()) UV = [[int(x)-1 for x in input().split()] for _ in range(m)] k = int(input()) ABS = [list(map(int, input().split())) for _ in range(k)] mf = Dinic(n + k + 2) s = n + k g = s + 1 inf = 10 ** 24 ans = 0 for i in range(n): p = P[i] if p > 0: ans += p mf.add_edge(s, i, p) elif p < 0: mf.add_edge(i, g, -p) for i in range(m): u, v = UV[i] mf.add_edge(v, u, inf) for i in range(k): a, b, t = ABS[i] ans += t a, b = a-1, b-1 mf.add_edge(s, n + i, t) mf.add_edge(n + i, a, inf) mf.add_edge(n + i, b, inf) ans -= mf.flow(s, g) print(ans)