// 入力制約/フォーマットチェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE #define USE_GETLINE #endif #ifdef INCLUDE_MAIN void Solve() { CEXPR( int , bound , 1e8 ); GETLINE_COUNT( AB_str , ' ' ); assert( AB_str_count == 2 ); STOI( AB_str , A , -bound , bound ); STOI( AB_str , B , -bound , bound ); GETLINE_COUNT( CD_str , ' ' ); assert( CD_str_count == 2 ); STOI( CD_str , C , -bound , bound ); STOI( CD_str , D , -bound , bound ); GETLINE_COUNT( ST_str , ' ' ); assert( ST_str_count == 2 ); STOI( ST_str , S , -bound , bound ); STOI( ST_str , T , -bound , bound ); CEXPR( ll , bound_N , 1e18 ); GETLINE_COUNT( NK_str , ' ' ); assert( NK_str_count == 2 ); STOI( NK_str , N , 0 , bound_N ); STOI( NK_str , K , 2 , bound ); DynamicMod::SetModulo( K ); TTMA M{ A , B , C , D }; TwoByOneMatrix v{ S , T }; v.Act( move( M ) , move( N ) ); COUT( v.Get( 0 ) , v.Get( 1 ) ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin // CEXPRがCEに依存しているので削除しない。 // redefinitionを避けるため圧縮元はincludeしない。 TE CE INT1 Residue(INT1 n,CO INT2& M)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < M?n:n %= M);} TE CL DynamicMods;TE CL COantsForDynamicMods{PU:COantsForDynamicMods()= delete;ST uint g_M;ST CE CO uint g_memory_bound = 2e6;ST uint g_memory_le;ST uint g_M_minus;ST int g_order;ST int g_order_minus;ST bool g_M_is_prime;}; TE uint COantsForDynamicMods::g_M = 0;TE uint COantsForDynamicMods::g_memory_le = 0;TE uint COantsForDynamicMods::g_M_minus = -1;TE int COantsForDynamicMods::g_order = 1;TE int COantsForDynamicMods::g_order_minus = 0;TE bool COantsForDynamicMods::g_M_is_prime = false; #define SFINAE_FOR_DMOD enable_if_t>>* #define DC_OF_CM_FOR_DYNAMIC_MOD(OPR)IN bool OP OPR(CO DynamicMods& n)CO NE #define DC_OF_AR_FOR_DYNAMIC_MOD(OPR,EX)IN DynamicMods OP OPR(DynamicMods n)CO EX; #define DF_OF_CM_FOR_DYNAMIC_MOD(OPR)TE IN bool DynamicMods::OP OPR(CO DynamicMods& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_DYNAMIC_MOD(OPR,EX,LEFT,OPR2)TE IN DynamicMods DynamicMods::OP OPR(DynamicMods n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE IN DynamicMods OP OPR(T n0,CO DynamicMods& n1)EX{RE MO(DynamicMods(MO(n0))OPR ## = n1);} TE CL DynamicMods{PU:uint m_n;IN DynamicMods()NE;IN DynamicMods(CO DynamicMods& n)NE;IN DynamicMods(DynamicMods&& n)NE;TE IN DynamicMods(T n)NE;IN DynamicMods& OP=(DynamicMods n)NE;IN DynamicMods& OP+=(CO DynamicMods& n)NE;IN DynamicMods& OP-=(CO DynamicMods& n)NE;IN DynamicMods& OP*=(CO DynamicMods& n)NE;IN DynamicMods& OP/=(DynamicMods n);TE IN DynamicMods& OP<<=(INT n);TE IN DynamicMods& OP>>=(INT n);IN DynamicMods& OP++()NE;IN DynamicMods OP++(int)NE;IN DynamicMods& OP--()NE;IN DynamicMods OP--(int)NE;DC_OF_CM_FOR_DYNAMIC_MOD(==);DC_OF_CM_FOR_DYNAMIC_MOD(!=);DC_OF_CM_FOR_DYNAMIC_MOD(<);DC_OF_CM_FOR_DYNAMIC_MOD(<=);DC_OF_CM_FOR_DYNAMIC_MOD(>);DC_OF_CM_FOR_DYNAMIC_MOD(>=);DC_OF_AR_FOR_DYNAMIC_MOD(+,NE);DC_OF_AR_FOR_DYNAMIC_MOD(-,NE);DC_OF_AR_FOR_DYNAMIC_MOD(*,NE);DC_OF_AR_FOR_DYNAMIC_MOD(/,);TE IN DynamicMods OP^(INT EX)CO;TE IN DynamicMods OP<<(INT n)CO;TE IN DynamicMods OP>>(INT n)CO;IN DynamicMods OP-()CO NE;IN DynamicMods& SignInvert()NE;IN DynamicMods& Invert();TE IN DynamicMods& Power(INT EX);IN VO swap(DynamicMods& n)NE;IN CRUI RP()CO NE;ST IN DynamicMods DeRP(uint n)NE;ST IN CO DynamicMods& Factorial(CRL n);ST IN CO DynamicMods& FactorialInverse(CRL n);ST IN DynamicMods Combination(CRL n,CRL i);ST IN CO DynamicMods& zero()NE;ST IN CO DynamicMods& one()NE;ST IN CRUI GetModulo()NE;ST IN VO SetModulo(CRUI M,CRI order_minus_1 = -1)NE;TE IN DynamicMods& PositivePower(INT EX)NE;TE IN DynamicMods& NonNegativePower(INT EX)NE;ST IN CO DynamicMods& Inverse(CRI n);ST IN CO DynamicMods& TwoPower(CRI n);US COants = COantsForDynamicMods;}; US DynamicMod = DynamicMods<0>; TE IN DynamicMods::DynamicMods()NE:m_n(){}TE IN DynamicMods::DynamicMods(CO DynamicMods& n)NE:m_n(n.m_n){}TE IN DynamicMods::DynamicMods(DynamicMods&& n)NE:m_n(MO(n.m_n)){}TE TE IN DynamicMods::DynamicMods(T n)NE:m_n(Residue(MO(n),COants::g_M)){}TE IN DynamicMods& DynamicMods::OP=(DynamicMods n)NE{m_n = MO(n.m_n);RE *TH;}TE IN DynamicMods& DynamicMods::OP+=(CO DynamicMods& n)NE{(m_n += n.m_n)< COants::g_M?m_n:m_n -= COants::g_M;RE *TH;}TE IN DynamicMods& DynamicMods::OP-=(CO DynamicMods& n)NE{m_n < n.m_n?(m_n += COants::g_M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE IN DynamicMods& DynamicMods::OP*=(CO DynamicMods& n)NE{m_n = Residue(MO(ull(m_n)* n.m_n),COants::g_M);RE *TH;}TE IN DynamicMods& DynamicMods::OP/=(DynamicMods n){RE OP*=(n.Invert());}TE TE IN DynamicMods& DynamicMods::OP<<=(INT n){AS(n >= 0);RE *TH *= DynamicMods(2).NonNegativePower(MO(n));}TE TE IN DynamicMods& DynamicMods::OP>>=(INT n){AS(n >= 0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += COants::g_M)>>= 1;}RE *TH;}TE IN DynamicMods& DynamicMods::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE IN DynamicMods DynamicMods::OP++(int)NE{DynamicMods n{*TH};OP++();RE n;}TE IN DynamicMods& DynamicMods::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE IN DynamicMods DynamicMods::OP--(int)NE{DynamicMods n{*TH};OP--();RE n;}DF_OF_CM_FOR_DYNAMIC_MOD(==);DF_OF_CM_FOR_DYNAMIC_MOD(!=);DF_OF_CM_FOR_DYNAMIC_MOD(>);DF_OF_CM_FOR_DYNAMIC_MOD(>=);DF_OF_CM_FOR_DYNAMIC_MOD(<);DF_OF_CM_FOR_DYNAMIC_MOD(<=);DF_OF_AR_FOR_DYNAMIC_MOD(+,NE,n,+);DF_OF_AR_FOR_DYNAMIC_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_DYNAMIC_MOD(*,NE,n,*);DF_OF_AR_FOR_DYNAMIC_MOD(/,,n.Invert(),*);TE TE IN DynamicMods DynamicMods::OP^(INT EX)CO{RE MO(DynamicMods(*TH).Power(MO(EX)));}TE TE IN DynamicMods DynamicMods::OP<<(INT n)CO{RE MO(DynamicMods(*TH)<<= MO(n));}TE TE IN DynamicMods DynamicMods::OP>>(INT n)CO{RE MO(DynamicMods(*TH)>>= MO(n));}TE IN DynamicMods DynamicMods::OP-()CO NE{RE MO(DynamicMods(*TH).SignInvert());}TE IN DynamicMods& DynamicMods::SignInvert()NE{m_n > 0?m_n = COants::g_M - m_n:m_n;RE *TH;}TE IN DynamicMods& DynamicMods::Invert(){RE m_n <(COants::g_M_is_prime?1e6:3e4)?*TH = Inverse(m_n):NonNegativePower(COants::g_order_minus);}TE TE IN DynamicMods& DynamicMods::PositivePower(INT EX)NE{DynamicMods pw{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= pw:*TH;EX >>= 1;pw *= pw;}RE *TH;}TE TE IN DynamicMods& DynamicMods::NonNegativePower(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePower(MO(EX));}TE TE IN DynamicMods& DynamicMods::Power(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE NonNegativePower(MO(neg?(EX %= COants::g_order)== 0?EX:EX += COants::g_order:EX));}TE IN VO DynamicMods::swap(DynamicMods& n)NE{std::swap(m_n,n.m_n);}TE IN CO DynamicMods& DynamicMods::Inverse(CRI n){if(COants::g_M == 1){RE zero();}AS(0 < n && n < int(COants::g_memory_le));ST VE> memory ={zero(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(COants::g_M_is_prime?DeRP(COants::g_M - memory[COants::g_M % le_curr].m_n * ull(COants::g_M / le_curr)% COants::g_M):DeRP(n).NonNegativePower(COants::g_order_minus));le_curr++;}RE memory[n];}TE IN CO DynamicMods& DynamicMods::TwoPower(CRI n){if(COants::g_M == 1){RE zero();}AS(0 <= n && n < int(COants::g_memory_le));ST VE> memory ={one()};ST int le_curr = 1;WH(le_curr <= n){memory.push_back(memory.back()+ memory.back());le_curr++;}RE memory[n];}TE IN CO DynamicMods& DynamicMods::Factorial(CRL n){AS(0 <= n);if(ll(COants::g_M)<= n){RE zero();}ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n && memory.back().m_n != 0){memory.push_back(memory.back()* DeRP(le_curr));le_curr++;}RE le_curr <= n?memory.back():memory[n];}TE IN CO DynamicMods& DynamicMods::FactorialInverse(CRL n){AS(0 <= n && n < COants::g_M);ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* Inverse(le_curr));le_curr++;}RE memory[n];}TE IN DynamicMods DynamicMods::Combination(CRL n,CRL i){RE 0 <= i && i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE IN CRUI DynamicMods::RP()CO NE{RE m_n;}TE IN DynamicMods DynamicMods::DeRP(uint n)NE{DynamicMods n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO DynamicMods& DynamicMods::zero()NE{ST CO DynamicMods z{};RE z;}TE IN CO DynamicMods& DynamicMods::one()NE{ST CO DynamicMods o{1};RE o;}TE IN CRUI DynamicMods::GetModulo()NE{RE COants::g_M;}TE IN VO DynamicMods::SetModulo(CRUI M,CRI order_minus)NE{COants::g_M = M;COants::g_memory_le = M < COants::g_memory_bound?M:COants::g_memory_bound;;COants::g_M_minus = M - 1;COants::g_order = order_minus == -1?M - 1:order_minus + 1;COants::g_order_minus = COants::g_order - 1;COants::g_M_is_prime = order_minus == -1;}TE IN DynamicMods Inverse(CO DynamicMods& n){RE MO(DynamicMods(n).Invert());}TE IN DynamicMods Power(DynamicMods n,INT EX){RE MO(n.Power(MO(EX)));}TE IN VO swap(DynamicMods& n0,DynamicMods& n1)NE{n0.swap(n1);}TE IN string to_string(CO DynamicMods& n)NE{RE to_string(n.RP())+ " + " + to_string(DynamicMods::GetModulo())+ "Z";}TE IN IS& OP>>(IS& is,DynamicMods& n){ll m;is >> m;n = m;RE is;}TE IN OS& OP<<(OS& os,CO DynamicMods& n){RE os << n.RP();} TE INT1 GCD(CO INT1& b_0,CO INT2& b_1){INT1 a_0 = b_0 < 0?-b_0:b_0;INT1 a_1 = b_1 < 0?-b_1:b_1;WH(a_1 != 0){swap(a_0 %= a_1,a_1);}RE a_0;}TE IN INT1 LCM(CO INT1& b_0,CO INT2& b_1){RE(b_0 == 0 && b_1 == 0)?0:(b_0 / GCD(b_0,b_1))* b_1;} #define TTMA TwoByTwoMatrix #define TOMA TwoByOneMatrix #define SFINAE_FOR_MA(DEFAULT)TY Arg,enable_if_t>* DEFAULT TE CL TTMA{PU:T m_M00;T m_M01;T m_M10;T m_M11;CE TTMA(T M00,T M01,T M10,T M11)NE;CE TTMA(CO T& scalar = T())NE;TE CE TTMA(CO Arg& scalar)NE;CE TTMA(CO TTMA& mat)NE;CE TTMA(TTMA&& mat)NE;CE TTMA& OP=(TTMA mat)NE;CE TTMA& OP+=(CO TTMA& mat)NE;CE TTMA& OP-=(CO TTMA& mat)NE;CE TTMA& OP*=(CO TTMA& mat)NE;CE TTMA& OP*=(CO T& scalar)NE;TE CE TTMA& OP*=(CO Arg& scalar)NE;IN TTMA& OP/=(CO TTMA& mat);IN TTMA& OP/=(CO T& scalar);TE IN TTMA& OP/=(CO Arg& scalar);IN TTMA& OP%=(CO T& scalar);IN TTMA& Invert();IN TTMA Inverse()CO;CE bool OP==(CO TTMA& mat)CO NE;CE bool OP!=(CO TTMA& mat)CO NE;CE TTMA OP+(TTMA mat)CO NE;CE TTMA OP-()CO NE;CE TTMA OP-(CO TTMA& mat)CO NE;CE TTMA OP*(CO TTMA& mat)CO NE;TE CE TTMA OP*(CO Arg& scalar)CO NE;IN TTMA OP/(CO TTMA& mat)CO;TE IN TTMA OP/(CO Arg& scalar)CO;IN TTMA OP%(CO T& scalar)CO;TE CE TTMA OP^(INT EX)CO;CE T tr()CO NE;CE T det()CO NE;CE VO swap(TTMA& mat)NE;CE CO T& Get(CRUI y,CRUI x)CO NE;CE T& Ref(CRUI y,CRUI x)NE;CE TTMA Square()CO NE;}; TE CE TTMA OP*(CO Arg& scalar,CO TTMA& mat)NE;TE CE TTMA PW(CO TTMA& mat,INT EX)NE;TE CE VO swap(TTMA& mat1,TTMA& mat2)NE;TE CE TTMA::TTMA(T M00,T M01,T M10,T M11)NE:m_M00(MO(M00)),m_M01(MO(M01)),m_M10(MO(M10)),m_M11(MO(M11)){}TE CE TTMA::TTMA(CO T& scalar)NE:m_M00(scalar),m_M01(),m_M10(),m_M11(scalar){}TE TE CE TTMA::TTMA(CO Arg& scalar)NE:TTMA(T(scalar)){}TE CE TTMA::TTMA(CO TTMA& mat)NE:m_M00(mat.m_M00),m_M01(mat.m_M01),m_M10(mat.m_M10),m_M11(mat.m_M11){}TE CE TTMA::TTMA(TTMA&& mat)NE:m_M00(MO(mat.m_M00)),m_M01(MO(mat.m_M01)),m_M10(MO(mat.m_M10)),m_M11(MO(mat.m_M11)){}TE CE TTMA& TTMA::OP=(TTMA mat)NE{m_M00 = MO(mat.m_M00);m_M01 = MO(mat.m_M01);m_M10 = MO(mat.m_M10);m_M11 = MO(mat.m_M11);RE *TH;}TE CE TTMA& TTMA::OP+=(CO TTMA& mat)NE{m_M00 += mat.m_M00;m_M01 += mat.m_M01;m_M10 += mat.m_M10;m_M11 += mat.m_M11;RE *TH;}TE CE TTMA& TTMA::OP-=(CO TTMA& mat)NE{m_M00 -= mat.m_M00;m_M01 -= mat.m_M01;m_M10 -= mat.m_M10;m_M11 -= mat.m_M11;RE *TH;}TE CE TTMA& TTMA::OP*=(CO TTMA& mat)NE{RE *TH = *TH * mat;}TE CE TTMA& TTMA::OP*=(CO T& scalar)NE{m_M00 *= scalar;m_M01 *= scalar;m_M10 *= scalar;m_M11 *= scalar;RE *TH;}TE TE CE TTMA& TTMA::OP*=(CO Arg& scalar)NE{RE *TH *= T(scalar);}TE IN TTMA& TTMA::OP/=(CO TTMA& mat){RE *TH = *TH / mat;}TE IN TTMA& TTMA::OP/=(CO T& scalar){RE *TH *= T(1)/ scalar;}TE TE IN TTMA& TTMA::OP/=(CO Arg& scalar){RE *TH /= T(scalar);}TE IN TTMA& TTMA::OP%=(CO T& scalar){m_M00 %= scalar;m_M01 %= scalar;m_M10 %= scalar;m_M11 %= scalar;RE *TH;}TE IN TTMA& TTMA::Invert(){::swap(m_M00,m_M11);m_M01 = -m_M01;m_M10 = -m_M10;RE *TH /= det();}TE TTMA TTMA::Inverse()CO{RE MO(TTMA(*TH).invert());}TE CE bool TTMA::OP==(CO TTMA& mat)CO NE{RE m_M00 == mat.m_M00 && m_M01 == mat.m_M01 && m_M10 == mat.m_M10 && m_M11 == mat.m_M11;}TE CE bool TTMA::OP!=(CO TTMA& mat)CO NE{RE !(*TH == mat);}TE CE TTMA TTMA::OP+(TTMA mat)CO NE{RE MO(mat += *TH);}TE CE TTMA TTMA::OP-()CO NE{RE TTMA(-m_M00,-m_M01,-m_M10,-m_M11);}TE CE TTMA TTMA::OP-(CO TTMA& mat)CO NE{RE MO(-mat += *TH);}TE CE TTMA TTMA::OP*(CO TTMA& mat)CO NE{RE TTMA(m_M00 * mat.m_M00 + m_M01 * mat.m_M10,m_M00 * mat.m_M01 + m_M01 * mat.m_M11,m_M10 * mat.m_M00 + m_M11 * mat.m_M10,m_M10 * mat.m_M01 + m_M11 * mat.m_M11);}TE TE CE TTMA TTMA::OP*(CO Arg& scalar)CO NE{RE MO(TTMA(*TH)*= scalar);}TE IN TTMA TTMA::OP/(CO TTMA& mat)CO{CO T det_inv{T(1)/(mat.m_M00 * mat.m_M11 - mat.m_M01 * mat.m_M10)};RE TTMA((m_M00 * mat.m_M11 - m_M01 * mat.m_M10)* det_inv,(m_M01 * mat.m_M00 - m_M00 * mat.m_M01)* det_inv,(m_M10 * mat.m_M11 - m_M11 * mat.m_M10)* det_inv,(m_M11 * mat.m_M00 - m_M10 * mat.m_M01)* det_inv);}TE TE IN TTMA TTMA::OP/(CO Arg& scalar)CO{RE MO(TTMA(*TH)/= scalar);}TE IN TTMA TTMA::OP%(CO T& scalar)CO{RE MO(TTMA(*TH)%= scalar);}TE TE CE TTMA TTMA::OP^(INT EX)CO{TTMA AN{1},PW{*TH};EX < 0?(EX *= -1,PW.Invert()):*TH;WH(EX > 0){(EX & 1)== 1?AN *= PW:AN;PW = PW.Square();EX >>= 1;}RE AN;}TE CE TTMA TTMA::Square()CO NE{RE TTMA(m_M00 * m_M00 + m_M01 * m_M10,(m_M00 + m_M11)* m_M01,m_M10 *(m_M00 + m_M11),m_M10 * m_M01 + m_M11 * m_M11);}TE CE T TTMA::tr()CO NE{RE m_M00 + m_M11;}TE CE T TTMA::det()CO NE{RE m_M00 * m_M11 - m_M01 * m_M10;}TE CE VO TTMA::swap(TTMA& mat)NE{std::swap(m_M00,mat.m_M00);std::swap(m_M01,mat.m_M01);std::swap(m_M10,mat.m_M10);std::swap(m_M11,mat.m_M11);}TE CE CO T& TTMA::Get(CRUI y,CRUI x)CO NE{RE y == 0?x == 0?m_M00:m_M01:x == 0?m_M10:m_M11;}TE CE T& TTMA::Ref(CRUI y,CRUI x)NE{RE y == 0?x == 0?m_M00:m_M01:x == 0?m_M10:m_M11;}TE CE TTMA OP*(CO Arg& scalar,CO TTMA& mat)NE{RE MO(TTMA(mat)*= scalar);}TE CE TTMA PW(CO TTMA& mat,INT EX)NE{RE mat ^ MO(EX);}TE CE VO swap(TTMA& mat1,TTMA& mat2)NE{mat1.swap(mat2);}TE IN OS& OP<<(OS& os,CO TTMA& mat){RE os << mat.Get(0,0)<< " " << mat.Get(0,1)<< "\n" << mat.Get(1,0)<< " " << mat.Get(1,1);} TE CL TOMA{PU:T m_M0;T m_M1;CE TOMA(T M0 = T(),T M1 = T())NE;CE TOMA(CO TOMA& mat)NE;CE TOMA(TOMA&& mat)NE;CE TOMA& OP=(TOMA mat)NE;CE TOMA& OP+=(CO TOMA& mat)NE;CE TOMA& OP-=(CO TOMA& mat)NE;CE TOMA& OP*=(CO T& scalar)NE;IN TOMA& OP/=(CO T& scalar);IN TOMA& OP%=(CO T& scalar);TE CE TOMA& Act(TTMA mat,INT EX = 1);TE CE TOMA Action(TTMA mat,INT EX = 1)CO;CE TOMA OP+(TOMA mat)CO NE;CE TOMA OP-(TOMA mat)CO NE;CE TOMA OP*(CO T& scalar)CO NE;IN TOMA OP/(CO T& scalar)CO;IN TOMA OP%(CO T& scalar)CO;CE CO T& Get(CRUI y)CO NE;CE T& Ref(CRUI y)NE;}; TE CE TOMA::TOMA(T M0,T M1)NE:m_M0(MO(M0)),m_M1(MO(M1)){}TE CE TOMA::TOMA(CO TOMA& mat)NE:m_M0(mat.m_M0),m_M1(mat.m_M1){}TE CE TOMA::TOMA(TOMA&& mat)NE:m_M0(MO(mat.m_M0)),m_M1(MO(mat.m_M1)){}TE CE TOMA& TOMA::OP=(TOMA mat)NE{m_M0 = MO(mat.m_M0);m_M1 = MO(mat.m_M1);RE *TH;}TE CE TOMA& TOMA::OP+=(CO TOMA& mat)NE{m_M0 += mat.m_M0;m_M1 += mat.m_M1;RE *TH;}TE CE TOMA& TOMA::OP-=(CO TOMA& mat)NE{m_M0 -= mat.m_M0;m_M1 -= mat.m_M1;RE *TH;}TE CE TOMA& TOMA::OP*=(CO T& scalar)NE{m_M0 *= scalar;m_M1 *= scalar;RE *TH;}TE IN TOMA& TOMA::OP/=(CO T& scalar){m_M0 /= scalar;m_M1 /= scalar;RE *TH;}TE IN TOMA& TOMA::OP%=(CO T& scalar){m_M0 %= scalar;m_M1 %= scalar;RE *TH;}TE TE CE TOMA& TOMA::Act(TTMA mat,INT EX){EX < 0?(EX = -EX,mat.Invert()):mat;WH(EX > 0){if((EX & 1)== 1){T M0 = mat.m_M00 * m_M0 + mat.m_M01 * m_M1;m_M1 = mat.m_M10 * m_M0 + mat.m_M11 * m_M1;m_M0 = MO(M0);}mat = mat.Square();EX >>= 1;}RE *TH;}TE TE CE TOMA TOMA::Action(TTMA mat,INT EX)CO{RE TOMA(*TH).Act(MO(mat),MO(EX));}TE CE TOMA TOMA::OP+(TOMA mat)CO NE{RE MO(mat += *TH);}TE CE TOMA TOMA::OP-(TOMA mat)CO NE{RE MO(mat -= *TH);}TE CE TOMA TOMA::OP*(CO T& scalar)CO NE{RE MO(TOMA(*TH)*= scalar);}TE IN TOMA TOMA::OP/(CO T& scalar)CO{RE MO(TOMA(*TH)/ scalar);}TE IN TOMA TOMA::OP%(CO T& scalar)CO{RE MO(TOMA(*TH)% scalar);}TE CE CO T& TOMA::Get(CRUI y)CO NE{RE y == 0?m_M0:m_M1;}TE CE T& TOMA::Ref(CRUI y)NE{RE y == 0?m_M0:m_M1;}TE CE TOMA OP*(CO TTMA& mat1,CO TOMA& mat2)NE{RE mat2.Action(mat1);}TE IN OS& OP<<(OS& os,CO TOMA& mat){RE os << mat.Get(0)<< " " << mat.Get(1);} // AAA ライブラリは以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ ) #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl int exec_mode = 0; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define CERRNS( ... ) #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #endif #include using namespace std; #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN; #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define PR1( A1 , ... ) A1 #define PR2( A1 , A2 , ... ) A2 #define PR3( A1 , A2 , A3 , ... ) A3 #define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR ) #define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; using path = pair; /* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/ // Random ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } // Set #define DECLARATION_OF_HASH( ... ) \ struct hash<__VA_ARGS__> \ { \ \ inline size_t operator()( const __VA_ARGS__& n ) const; \ \ }; \ #define DEFINITION_OF_POP_FOR_SET( SET ) \ template inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \ template inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \ template inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \ template inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward( u ) } ); return S; } \ template inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \ template inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \ template inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \ #define DEFINITION_OF_UNION_FOR_SET( SET ) \ template inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \ template inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \ class is_ordered { private: is_ordered() = delete; template static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() ); static constexpr false_type Check( ... ); public: template static constexpr const bool value = is_same_v< decltype( Check( declval() ) ) , true_type >; }; template using Set = conditional_t>,unordered_set,conditional_t,set,void>>; template inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); } template inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); } template inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); } template inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; } template