// 入力制約/フォーマットチェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE #define USE_GETLINE #endif #ifdef INCLUDE_MAIN void Solve() { CEXPR( int , bound , 1e8 ); CEXPR( ll , bound_N , 1e18 ); GETLINE_COUNT_ASSERT( X_str , ' ' , 6 ); STOI( X_str , A , -bound , bound ); STOI( X_str , B , -bound , bound ); STOI( X_str , C , -bound , bound ); STOI( X_str , D , -bound , bound ); STOI( X_str , E , -bound , bound ); STOI( X_str , N , 0 , bound_N ); CEXPR( int , Q , int(1e9)+7 ); if( N == 0 ){ RETURN( ( A %= Q ) < 0 ? A += Q : A ); } using T = Mod; Matrix M{ 4 , 4 , 1 , C , D , E , 0 , C , D , E , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 }; Matrix v{ 4 , 1 , A + B , B , A , 1 }; v = Act( move( M ) , move( --N ) , move( v ) ); RETURN( v[0][0] ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin // CEXPRがCEに依存しているので削除しない。 // redefinitionを避けるため圧縮元はincludeしない。 /* ConstexprModulo (7KB)*/ CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 2e6;ST CE CO uint g_memory_le = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order = M - 1;ST CE int g_order_minus = g_order - 1;}; #define SFINAE_FOR_MOD enable_if_t>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(uint n)NE;ST IN CO Mod& Inverse(CRI n);ST IN CO Mod& TwoPower(CRI n);ST IN CO Mod& Factorial(CRL n);ST IN CO Mod& FactorialInverse(CRL n);ST IN Mod Combination(CRL n,CRL i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;ST IN CE uint GetModulo()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;US COants = COantsForMod;}; US MP = Mod

; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(Residue(MO(n))){}TE CE Mod& Mod::OP=(Mod n)NE{m_n = MO(n.m_n);RE *TH;}TE CE Mod& Mod::OP+=(CO Mod& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE CE Mod& Mod::OP-=(CO Mod& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE CE Mod& Mod::OP*=(CO Mod& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE IN CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *=(m_n < COants::g_memory_le?TwoPower(n):Mod(2).NonNegativePower(MO(n)));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_le?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_le)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus);}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE NonNegativePW(MO(neg?(EX %= COants::g_order)== 0?EX:EX += COants::g_order:EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CRI n){AS(0 < n && n < int(COants::g_memory_le));ST VE> memory ={zero(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(DeRP(M - memory[M % le_curr].m_n * ull(M / le_curr)% M));le_curr++;}RE memory[n];}TE IN CO Mod& Mod::TwoPower(CRI n){AS(0 <= n && n < int(COants::g_memory_le));ST VE> memory ={one()};ST int le_curr = 1;WH(le_curr <= n){memory.push_back(memory.back()+ memory.back());le_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRL n){AS(n >= 0);if(ll(M)<= n){RE zero();}ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* le_curr);le_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRL n){AS(0 <= n && n < ll(M));ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* Inverse(le_curr));le_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRL n,CRL i){RE 0 <= i && i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(uint n)NE{Mod n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE IN CE uint Mod::GetModulo()NE{RE M;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN IS& OP>>(IS& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN OS& OP<<(OS& os,CO Mod& n){RE os << n.RP();} // Tに渡す型のcompressを先に貼る。 #define MA Matrix TE CL MA{PU:int m_Y;int m_X;VE> m_M;IN MA(CRI Y = 0,CRI X = 0)NE;IN MA(CRI Y,CRI X,CO T& t)NE;TE IN MA(CRI Y,CRI X,Arg0&& t0,Arg1&& t1,Args&&... args)NE;IN MA(CO MA& mat)NE;IN MA(MA&& mat)NE;IN MA(CO VE>& mat)NE;IN MA(VE>&& mat)NE;IN MA& OP=(CO MA& mat)NE;IN MA& OP=(MA&& mat)NE;IN MA& OP=(VE> mat);IN MA& OP+=(CO MA& mat);IN MA& OP-=(CO MA& mat);IN MA& OP*=(CO T& scalar)NE;IN MA& OP*=(CO MA& mat);IN MA& OP/=(CO T& scalar);IN MA& OP%=(CO T& scalar);TE IN MA& OP^=(INT EX);IN bool OP==(CO MA& mat)CO NE;IN bool OP!=(CO MA& mat)CO NE;IN MA OP+(CO MA& mat)CO;IN MA OP-(CO MA& mat)CO;IN MA OP*(CO T& scalar)CO NE;IN MA OP*(CO MA& mat)CO;IN MA OP/(CO T& scalar)CO;IN MA OP%(CO T& scalar)CO;TE IN MA OP^(INT EX)CO;IN MA TP()CO NE;IN T Trace()CO NE;IN CRI GetCodomainDimension()CO NE;IN CRI GetDomainDimension()CO NE;IN CO VE>& GetEntry()CO NE;IN VE>& RefEntry()NE;IN CO VE& OP[](CRI y)CO;IN VE& OP[](CRI y);};TE CL Vector:PU MA{PU:IN Vector(CRI Y = 0)NE;TE IN Vector(Arg0&& t0,Arg1&& t1,Args&&... args)NE;IN Vector(CO MA& vec)NE;IN Vector(MA&& vec)NE;IN Vector(CO VE& vec)NE;IN Vector(VE&& vec)NE;IN Vector& OP=(CO MA& vec)NE;IN Vector& OP=(MA&& vec)NE;IN Vector& OP=(CO VE& vec);IN CO T& OP[](CRI y)CO;IN T& OP[](CRI y);IN CRI SZ()CO NE;}; TE IN MA::MA(CRI Y,CRI X)NE:m_Y(Y),m_X(X),m_M(Y,VE(X)){}TE IN Vector::Vector(CRI Y)NE:MA(Y,1){}TE IN MA::MA(CRI Y,CRI X,CO T& t)NE:MA(Y,X){CO int minXY = min(X,Y);for(int y = 0;y < minXY;y++){m_M[y][y]= t;};}TE TE IN MA::MA(CRI Y,CRI X,Arg0&& t0,Arg1&& t1,Args&&... args)NE:MA(Y,X){VE temp ={T(forward(t0)),T(forward(t1)),T(forward(args))...};AS(int(temp.SZ())== X * Y);int i = 0;for(int y = 0;y < Y;y++){for(int x = 0;x < X;x++){m_M[y][x]= MO(temp[i++]);}}}TE TE IN Vector::Vector(Arg0&& t0,Arg1&& t1,Args&&... args)NE:MA(2 + sizeof...(args),1,forward(t0),forward(t1),forward(args)...){}TE IN MA::MA(CO MA& mat)NE:m_Y(),m_X(),m_M(){*TH = mat.m_M;}TE IN Vector::Vector(CO MA& vec)NE:MA(vec){}TE IN MA::MA(MA&& mat)NE:m_Y(),m_X(),m_M(){*TH = MO(mat.m_M);}TE IN Vector::Vector(MA&& vec)NE:MA(MO(vec)){}TE IN MA::MA(CO VE>& mat)NE:m_Y(),m_X(),m_M(){*TH = mat;}TE IN Vector::Vector(CO VE& vec)NE:MA(){*TH = vec;}TE IN MA::MA(VE>&& mat)NE:m_Y(),m_X(),m_M(){*TH = MO(mat);}TE IN Vector::Vector(VE&& vec)NE:MA(){*TH = MO(vec);}TE IN MA& MA::OP=(CO MA& mat)NE{RE *TH = mat.m_M;}TE IN Vector& Vector::OP=(CO MA& vec)NE{MA& mat = *TH;mat = vec;AS(TH->m_X == 1);RE *TH;}TE IN MA& MA::OP=(MA&& mat)NE{RE *TH = MO(mat.m_M);}TE IN Vector& Vector::OP=(MA&& vec)NE{MA& mat = *TH;mat = MO(vec);AS(TH->m_X == 1);RE *TH;}TE IN MA& MA::OP=(VE> mat){m_M = MO(mat);m_X =(m_Y = m_M.SZ())> 0?int(m_M[0].SZ()):0;for(int y = 1;y < m_Y;y++){AS(int(m_M[y].SZ())== m_X);}RE *TH;}TE IN Vector& Vector::OP=(CO VE& vec){TH->m_M.resize(TH->m_Y = vec.SZ(),VE(TH->m_X = 1));for(int y = 0;y < TH->m_Y;y++){TH->m_M[y][0]= vec[y];}RE *TH;}TE IN MA& MA::OP+=(CO MA& mat){AS(m_X == mat.m_X && m_Y == mat.m_Y);for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];auto& mat_y = mat.m_M[y];for(int x = 0;x < m_X;x++){m_M_y[x]+= mat_y[x];}}RE *TH;}TE IN MA& MA::OP-=(CO MA& mat){AS(m_X == mat.m_X && m_Y == mat.m_Y);for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];auto& mat_y = mat.m_M[y];for(int x = 0;x < m_X;x++){m_M_y[x]-= mat_y[x];}}RE *TH;}TE IN MA& MA::OP*=(CO T& scalar)NE{for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];for(int x = 0;x < m_X;x++){m_M_y[x]*= scalar;}}RE *TH;}TE IN MA& MA::OP*=(CO MA& mat){RE OP=(MO(*TH * mat));}TE IN MA& MA::OP/=(CO T& scalar){RE OP*=(T(1)/ scalar);}TE IN MA& MA::OP%=(CO T& scalar){for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];for(int x = 0;x < m_X;x++){m_M_y[x]%= scalar;}}RE *TH;}TE TE IN MA& MA::OP^=(INT EX){AS(m_X == m_Y && EX >= 0);MA pw{m_X,m_Y,1};WH(EX > 0){(EX& 1)== 1?pw *= *TH:pw;*TH *= *TH;EX >>= 1;}RE *TH = MO(pw);}TE IN bool MA::OP==(CO MA& mat)CO NE{if(m_X != mat.m_X || m_Y != mat.m_Y){RE false;}for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];auto& mat_y = mat[y];for(int x = 0;x < m_X;x++){if(m_M_y[x]!= mat_y[x]){RE false;}}}RE true;}TE IN bool MA::OP!=(CO MA& mat)CO NE{RE !(*TH == mat);}TE IN MA MA::OP+(CO MA& mat)CO{RE MO(MA(*TH)+= mat);}TE IN MA MA::OP-(CO MA& mat)CO{RE MO(MA(*TH)-= mat);}TE IN MA MA::OP*(CO T& scalar)CO NE{RE MO(MA(*TH)*= scalar);}TE IN MA MA::OP*(CO MA& mat)CO{AS(m_X == mat.m_Y);MA prod{m_Y,mat.m_X};for(int y = 0;y < m_Y;y++){auto& m_M_y = m_M[y];auto& prod_y = prod.m_M[y];for(int x = 0;x < m_X;x++){auto& m_M_yx = m_M_y[x];auto& mat_x = mat.m_M[x];for(int z = 0;z < mat.m_X;z++){prod_y[z]+= m_M_yx * mat_x[z];}}}RE prod;}TE IN MA MA::OP/(CO T& scalar)CO{RE MO(MA(*TH)/= scalar);}TE IN MA MA::OP%(CO T& scalar)CO{RE MO(MA(*TH)%= scalar);}TE TE IN MA MA::OP^(INT EX)CO{RE MO(MA(*TH)%= MO(EX));}TE IN MA MA::TP()CO NE{MA M_t{m_Y,m_X};for(int x = 0;x < m_X;x++){auto& M_t_x = M_t.m_M[x];for(int y = 0;y < m_Y;y++){M_t_x[y]= m_M[y][x];}}RE M_t;}TE IN T MA::Trace()CO NE{CE CO int minXY = min(m_X,m_Y);T AN{};for(int y = 0;y < minXY;y++){AN += m_M[y][y];}RE AN;}TE IN CRI MA::GetCodomainDimension()CO NE{RE m_Y;}TE IN CRI MA::GetDomainDimension()CO NE{RE m_X;}TE IN CO VE>& MA::GetEntry()CO NE{RE m_M;}TE IN CRI Vector::SZ()CO NE{RE TH->m_Y;}TE IN CO VE& MA::OP[](CRI y)CO{AS(0 <= y && y < m_Y);RE m_M[y];}TE IN CO T& Vector::OP[](CRI y)CO{AS(0 <= y && y < TH->m_Y);RE TH->m_M[y][0];}TE IN VE& MA::OP[](CRI y){AS(0 <= y && y < m_Y);RE m_M[y];}TE IN T& Vector::OP[](CRI y){AS(0 <= y && y < TH->m_Y);RE TH->m_M[y][0];}TE IN MA OP*(CO T& scalar,CO MA& mat)NE{RE mat * scalar;}TE IN MA Power(MA mat,INT EX){RE MO(mat ^= MO(EX));}TE IN MA Act(MA mat,INT EX,MA v){AS(EX >= 0);WH(EX > 0){(EX & 1)== 0?v:v = mat * v;mat *= mat;EX >>= 1;}RE MO(v);}TE IN OS& OP<<(OS& os,CO Vector& v){auto& Y = v.SZ();for(int y = 0;y < Y;y++){(y == 0?os:os << ' ')<< v[y];}RE os;} // AAA ライブラリは以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ ) #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl int exec_mode = 0; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define CERRNS( ... ) #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #endif #include using namespace std; #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN; #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define PR1( A1 , ... ) A1 #define PR2( A1 , A2 , ... ) A2 #define PR3( A1 , A2 , A3 , ... ) A3 #define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR ) #define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; using path = pair; /* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/ // Random ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } // Set #define DECLARATION_OF_HASH( ... ) \ struct hash<__VA_ARGS__> \ { \ \ inline size_t operator()( const __VA_ARGS__& n ) const; \ \ }; \ #define DEFINITION_OF_POP_FOR_SET( SET ) \ template inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \ template inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \ template inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \ template inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward( u ) } ); return S; } \ template inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \ template inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \ template inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \ #define DEFINITION_OF_UNION_FOR_SET( SET ) \ template inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \ template inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \ class is_ordered { private: is_ordered() = delete; template static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() ); static constexpr false_type Check( ... ); public: template static constexpr const bool value = is_same_v< decltype( Check( declval() ) ) , true_type >; }; template using Set = conditional_t>,unordered_set,conditional_t,set,void>>; template inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); } template inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); } template inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); } template inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; } template