#include #include using namespace std; using ll = long long int; using u64 = unsigned long long; using pll = pair; // #include // using namespace atcoder; #define REP(i, a, b) for (ll i = (a); i < (b); i++) #define REPrev(i, a, b) for (ll i = (a); i >= (b); i--) #define ALL(coll) (coll).begin(), (coll).end() #define SIZE(v) ((ll)((v).size())) #define REPOUT(i, a, b, exp, sep) REP(i, (a), (b)) cout << (exp) << (i + 1 == (b) ? "" : (sep)); cout << "\n" // @@ !! LIM(f:intDiv) // ---- inserted function f:intDiv from util.cc // imod, divFloor, divCeil // imod(x, y) : remainder of x for y // for y > 0: // imod(x, y) = r where x = dy + r, 0 <= r < y // imod(x, -y) = r where x = dy + r, 0 >= r > y // Thus, imod( 10, 7) = 3 // imod(-10, 7) = 4 // imod( 10, -7) = -4 // imod(-10, -7) = -3 ll imod(ll x, ll y) { ll v = x % y; if ((x >= 0) == (y >= 0)) return v; else return v == 0 ? 0 : v + y; } // Integer Division; regardless pos/neg ll divFloor(ll x, ll y) { if (x > 0) { if (y > 0) return x / y; else return (x - y - 1) / y; }else { if (y > 0) return (x - y + 1) / y; else return x / y; } } ll divCeil(ll x, ll y) { if (x > 0) { if (y > 0) return (x + y - 1) / y; else return x / y; }else { if (y > 0) return x / y; else return (x + y + 1) / y; } } // Just a note. For d \in Z and t \in R, // d < t <=> d < ceil(t), d <= t <=> d <= floor(t), // d > t <=> d > floor(t), d >= t <=> d >= ceil(t). // ---- end f:intDiv // @@ !! LIM -- end mark -- int main(/* int argc, char *argv[] */) { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout << setprecision(20); auto ask = [&](ll x) -> ll { cout << "? " << x << endl; ll t; cin >> t; return t; }; auto answer = [&](ll x) -> void { cout << "! " << x << endl; }; #if DEBUG ll lim = 10; #else ll lim = 1e6; #endif ll lo = 1, hi = lim; ll prev = 1; ll cur = lim; cout << 1 << endl; while (lo < hi) { ll t = ask(cur); if (t) { if (prev < cur) { lo = divCeil(lo + hi, 2); prev = cur; cur = lo - (prev - hi); }else { hi = divFloor(lo + hi, 2); prev = cur; cur = hi + (lo - prev); } }else { if (prev < cur) { hi = divFloor(lo + hi, 2); prev = cur; cur = lo - (prev - hi); }else { lo = divCeil(lo + hi, 2); prev = cur; cur = hi + (lo - prev); } } } answer(hi); return 0; }