#include #include #include #include #include #include #include #include using namespace std; // --- パラメータ調整欄 --- // --- 戦略パラメータ --- // 1つの目的地への経路で試行する乱択の回数 const int NUM_TRIALS = 100; // 序盤フェーズで訪問するターゲットの数 (全99個中) const int INITIAL_PHASE_TARGETS = 80; // 序盤フェーズで許容する最大マンハッタン距離 const int MAX_DIST_INITIAL_PHASE = 12; // 後半戦略で「遠い」と判断するマンハッタン距離 const int MIN_DIST_FOR_TARGETING = 10; // --- 焼きなましパラメータ --- // 実行時間制限(ミリ秒)。2000msの制限に対し、マージンを持たせる const double TIME_LIMIT_MS = 1950.0; // 焼きなましの開始温度 const double SA_START_TEMP = 500000.0; // 焼きなましの終了温度 const double SA_END_TEMP = 10.0; // --- グローバル定数 (変更不要) --- const int N_CONST = 10; const int T_CONST = 1000; // --- 乱数生成器 --- mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); /** * @struct State * @brief 現在のゲームの状態を管理する構造体 */ struct State { int r, c; int s; vector> grid; int ops_count; string ops_log; State(const vector>& initial_grid) { r = 0; c = 0; s = 0; grid = initial_grid; ops_count = 0; ops_log = ""; } void apply_op(char op) { if (ops_count >= T_CONST) return; bool valid = true; if (op == 'U') { if (r > 0) r--; else valid = false; } else if (op == 'D') { if (r < N_CONST - 1) r++; else valid = false; } else if (op == 'L') { if (c > 0) c--; else valid = false; } else if (op == 'R') { if (c < N_CONST - 1) c++; else valid = false; } else if (op == 'W') { grid[r][c] ^= s; } else if (op == 'C') { s ^= grid[r][c]; } else { valid = false; } if (valid) { ops_count++; ops_log += op; } } void apply_ops_string(const string& ops) { for (char op : ops) { apply_op(op); } } long long calculate_total_score() const { long long total_score = 0; for(const auto& row : grid) { for(int cell_val : row) { total_score += cell_val; } } return total_score; } }; // --- ヘルパー関数 --- string get_simple_move_ops(int r1, int c1, int r2, int c2) { string path_ops = ""; string vert_move = (r1 < r2) ? "D" : "U"; string horz_move = (c1 < c2) ? "R" : "L"; for (int i = 0; i < abs(r1 - r2); ++i) path_ops += vert_move; for (int i = 0; i < abs(c1 - c2); ++i) path_ops += horz_move; return path_ops; } pair find_best_ops_for_target(const State& current_state, int tr, int tc) { string move_ops = get_simple_move_ops(current_state.r, current_state.c, tr, tc); string best_total_ops = move_ops; long long best_score_increase = -1; for (int i = 0; i < NUM_TRIALS; ++i) { string trial_ops = ""; int temp_s = current_state.s; vector> temp_grid = current_state.grid; long long current_increase = 0; int temp_r = current_state.r; int temp_c = current_state.c; for(char op : move_ops) { trial_ops += op; if (op == 'U') temp_r--; else if (op == 'D') temp_r++; else if (op == 'L') temp_c--; else if (op == 'R') temp_c++; long long potential_increase = (long long)(temp_grid[temp_r][temp_c] ^ temp_s) - temp_grid[temp_r][temp_c]; int dist_to_target = abs(temp_r - tr) + abs(temp_c - tc); if (potential_increase > 0 && current_state.ops_count + trial_ops.length() + 1 + dist_to_target <= T_CONST) { trial_ops += 'W'; current_increase += potential_increase; temp_grid[temp_r][temp_c] ^= temp_s; } if (i > 0 && uniform_int_distribution(0, 1)(rng) == 1) { if (current_state.ops_count + trial_ops.length() < T_CONST) { trial_ops += 'C'; temp_s ^= temp_grid[temp_r][temp_c]; } } } if (current_state.ops_count + trial_ops.length() < T_CONST) { long long final_increase = (long long)(temp_grid[tr][tc] ^ temp_s) - temp_grid[tr][tc]; if (final_increase > 0) { trial_ops += 'W'; current_increase += final_increase; } } if (current_increase > best_score_increase) { best_score_increase = current_increase; best_total_ops = trial_ops; } } if (best_score_increase > 0) return {best_total_ops, best_score_increase}; else return {move_ops, -1}; } /** * @brief 指定された訪問順で完全なシミュレーションを実行し、最終状態を返す * @param visit_order 訪問するマスの順序 * @param initial_grid 初期盤面 * @return State シミュレーション後の最終状態 */ State run_simulation(vector> visit_order, const vector>& initial_grid) { State current_state(initial_grid); vector> postponed_queue; // 序盤フェーズ int targets_visited = 0; while (targets_visited < INITIAL_PHASE_TARGETS && !visit_order.empty()) { if (current_state.ops_count >= T_CONST) break; pair target_pos = visit_order.front(); int dist = abs(current_state.r - target_pos.first) + abs(current_state.c - target_pos.second); if (dist > MAX_DIST_INITIAL_PHASE) { postponed_queue.push_back(target_pos); visit_order.erase(visit_order.begin()); continue; } pair result = find_best_ops_for_target(current_state, target_pos.first, target_pos.second); current_state.apply_ops_string(result.first); visit_order.erase(visit_order.begin()); targets_visited++; } // 中盤フェーズ visit_order.insert(visit_order.end(), postponed_queue.begin(), postponed_queue.end()); while (!visit_order.empty()) { if (current_state.ops_count >= T_CONST) break; pair target_pos = visit_order.front(); pair result = find_best_ops_for_target(current_state, target_pos.first, target_pos.second); current_state.apply_ops_string(result.first); visit_order.erase(visit_order.begin()); } // 後半戦略 while (true) { int remaining_ops = T_CONST - current_state.ops_count; if (remaining_ops < 2) break; int best_target_r = -1, best_target_c = -1; int min_score = -1; for (int r = 0; r < N_CONST; ++r) { for (int c = 0; c < N_CONST; ++c) { int dist = abs(current_state.r - r) + abs(current_state.c - c); if (dist == 0 || dist >= remaining_ops) continue; bool is_target_candidate = false; if (remaining_ops > MIN_DIST_FOR_TARGETING + dist + 5) { if (dist >= MIN_DIST_FOR_TARGETING) is_target_candidate = true; } else { is_target_candidate = true; } if (is_target_candidate) { if (best_target_r == -1 || current_state.grid[r][c] < min_score) { min_score = current_state.grid[r][c]; best_target_r = r; best_target_c = c; } } } } if (best_target_r == -1) break; pair result = find_best_ops_for_target(current_state, best_target_r, best_target_c); current_state.apply_ops_string(result.first); } return current_state; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); auto start_time = chrono::steady_clock::now(); int N_in, T_in; cin >> N_in >> T_in; vector> initial_grid(N_CONST, vector(N_CONST)); for (int i = 0; i < N_CONST; ++i) { for (int j = 0; j < N_CONST; ++j) { cin >> initial_grid[i][j]; } } // --- 焼きなまし法の初期化 --- vector> base_order; for (int i = 0; i < N_CONST; ++i) { for (int j = 0; j < N_CONST; ++j) { if (i == 0 && j == 0) continue; base_order.push_back({i, j}); } } shuffle(base_order.begin(), base_order.end(), rng); vector> current_order = base_order; State current_sim_state = run_simulation(current_order, initial_grid); State best_state = current_sim_state; // ★ 最良の状態を保存 long long current_score = current_sim_state.calculate_total_score(); long long best_score = current_score; int iteration = 0; int accepted_count = 0; cerr << "[SA] Initial Score: " << best_score << endl; // --- 焼きなましループ --- while(true) { auto current_time = chrono::steady_clock::now(); double elapsed_ms = chrono::duration_cast(current_time - start_time).count(); if (elapsed_ms > TIME_LIMIT_MS) break; iteration++; vector> new_order = current_order; // 近傍操作 (2-opt or 2-swap) if (uniform_int_distribution(0, 1)(rng) == 0) { // 2-opt int i = uniform_int_distribution(0, new_order.size() - 1)(rng); int j = uniform_int_distribution(0, new_order.size() - 1)(rng); if (i > j) swap(i, j); if (i != j) reverse(new_order.begin() + i, new_order.begin() + j); } else { // 2-swap int i = uniform_int_distribution(0, new_order.size() - 1)(rng); int j = uniform_int_distribution(0, new_order.size() - 1)(rng); if (i != j) swap(new_order[i], new_order[j]); } State new_state = run_simulation(new_order, initial_grid); long long new_score = new_state.calculate_total_score(); double temp = SA_START_TEMP + (SA_END_TEMP - SA_START_TEMP) * elapsed_ms / TIME_LIMIT_MS; double delta = new_score - current_score; if (delta > 0 || (temp > 0 && uniform_real_distribution(0.0, 1.0)(rng) < exp(delta / temp))) { current_order = new_order; current_score = new_score; current_sim_state = new_state; // 現在の状態も更新 accepted_count++; if (current_score > best_score) { best_score = current_score; best_state = current_sim_state; // ★ スコアが改善したら、状態を丸ごと保存 } } if (iteration % 10 == 0) { cerr << "[SA] iter:" << iteration << " time:" << (int)elapsed_ms << "ms" << " temp:" << (int)temp << " score:" << current_score << " best:" << best_score << " accept_rate:" << (double)accepted_count/iteration << endl; } } // --- 最良解の操作ログを生成して出力 --- // ★ 保存しておいたベストな状態から直接ログを出力する for (char op : best_state.ops_log) { cout << op << "\n"; } // --- 最終デバッグ出力 --- cerr << "--- Final Debug Info ---" << endl; cerr << "SA iterations: " << iteration << endl; cerr << "Best score found: " << best_score << endl; cerr << "Final operations count: " << best_state.ops_log.length() << "/" << T_CONST << endl; // ★ 検算のため、最終出力のスコアも計算して表示 cerr << "Score from final output: " << best_state.calculate_total_score() << endl; return 0; }