//#define //_GLIBCXX_DEBUG #include #include #include using namespace std; using namespace atcoder; using ll = long long; using ull = unsigned long long; using vll=vector; using vvll=vector>; using Graph=vvll; using Edgegraph=vector>>; using vch=vector; using vvch=vector>; using P=pair; using vP=vector

; using tup=tuple; using vbl=vector; using vvbl=vector; using vs=vector; using vvs=vector; using vd=vector; using vvd=vector; using mint = atcoder::modint998244353; const int infint = 1073741823; const ll inf = 1LL << 60; template inline bool chmax(T& a,T b){if (a inline bool chmin(T& a,T b){if (a>b){a=b;return 1;}return 0;} #define rep(i,x,lim) for(ll i = (x);i < (ll)(lim);i++) #define rep2(j,x,lim) for(int j = (x);j < (int)(lim);j++) const ll big=(1e+9)+7; const ll big2=998244353; ll dx[8]={1,-1,0,0,1,1,-1,-1}; ll dy[8]={0,0,1,-1,1,-1,1,-1}; int modpow(ll x,ll n,ll m){ if(n==0) return 1%m; x=((x%m)+m)%m; if(n%2==0){ ll r=modpow(x,n/2,m); return r*r%m; } else{ ll r=modpow(x,n/2,m); return r*r%m*x%m; } } //pは素数でなければならない。 int revmod(ll x,ll p){return modpow(x,p-2,p);} //99 のRを高速に求める int modp(ll p,ll q){ ll gc=gcd(p,q); p/=gc;q/=gc; ll rev=revmod(p,big2); return (rev*q)%big2; } //nCrを求める modbig2 int nCr(ll n,ll r){ ll ans=1; rep(i,1,n+1) ans=(ans*i)%big2; rep(i,1,r+1) ans=(ans*modpow(i,big2-2,big2))%big2; rep(i,1,n-r+1) ans=(ans*modpow(i,big2-2,big2))%big2; return ans; } ll op(ll a,ll b){return max(a,b);} ll opmin(ll a,ll b){return min(a,b);} ll e(){return 0;} int main(){ ll N,K; cin >> N >> K; vvll dp(2*N+1,vll(K+1)); dp[0][0]=1; rep(i,1,2*N+1){ rep(j,0,K+1){ if(j-1>=0)dp[i][j]=(dp[i][j]+dp[i-1][j-1])%big2; if(j+1<=K)dp[i][j]=(dp[i][j]+dp[i-1][j+1])%big2; } } vvll dp2(2*N+1,vll(K)); dp2[0][0]=1; rep(i,1,2*N+1){ rep(j,0,K){ if(j-1>=0)dp2[i][j]=(dp2[i][j]+dp2[i-1][j-1])%big2; if(j+1<=K)dp2[i][j]=(dp2[i][j]+dp2[i-1][j+1])%big2; } } cout << dp[2*N][0]-dp2[2*N][0]; }