#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KK2_TEMPLATE_PROCON_HPP #define KK2_TEMPLATE_PROCON_HPP 1 #ifndef KK2_TEMPLATE_CONSTANT_HPP #define KK2_TEMPLATE_CONSTANT_HPP 1 #ifndef KK2_TEMPLATE_TYPE_ALIAS_HPP #define KK2_TEMPLATE_TYPE_ALIAS_HPP 1 using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using pi = std::pair; using pl = std::pair; using pil = std::pair; using pli = std::pair; template using vc = std::vector; template using vvc = std::vector>; template using vvvc = std::vector>; template using vvvvc = std::vector>; template using pq = std::priority_queue; template using pqi = std::priority_queue, std::greater>; #endif // KK2_TEMPLATE_TYPE_ALIAS_HPP template constexpr T infty = 0; template <> constexpr int infty = (1 << 30) - 123; template <> constexpr i64 infty = (1ll << 62) - (1ll << 31); template <> constexpr i128 infty = (i128(1) << 126) - (i128(1) << 63); template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr u128 infty = infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; constexpr int mod = 998244353; constexpr int modu = 1e9 + 7; constexpr long double PI = 3.14159265358979323846; #endif // KK2_TEMPLATE_CONSTANT_HPP #ifndef KK2_TEMPLATE_FUNCTION_UTIL_HPP #define KK2_TEMPLATE_FUNCTION_UTIL_HPP 1 #ifndef KK2_MATH_MONOID_MAX_HPP #define KK2_MATH_MONOID_MAX_HPP 1 #ifndef KK2_TYPE_TRAITS_IO_HPP #define KK2_TYPE_TRAITS_IO_HPP 1 namespace kk2 { namespace type_traits { struct istream_tag {}; struct ostream_tag {}; } // namespace type_traits template using is_standard_istream = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_standard_ostream = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_user_defined_istream = std::is_base_of; template using is_user_defined_ostream = std::is_base_of; template using is_istream = typename std::conditional::value || is_user_defined_istream::value, std::true_type, std::false_type>::type; template using is_ostream = typename std::conditional::value || is_user_defined_ostream::value, std::true_type, std::false_type>::type; template using is_istream_t = std::enable_if_t::value>; template using is_ostream_t = std::enable_if_t::value>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_IO_HPP namespace kk2 { namespace monoid { template > struct Max { static constexpr bool commutative = true; using M = Max; S a; bool is_unit; Max() : a(S()), is_unit(true) {} Max(S a_) : a(a_), is_unit(false) {} operator S() const { return a; } inline static M op(M l, M r) { if (l.is_unit or r.is_unit) return l.is_unit ? r : l; return Compare{}(l.a, r.a) ? r : l; } inline static M unit() { return M(); } bool operator==(const M &rhs) const { return is_unit == rhs.is_unit and (is_unit or a == rhs.a); } bool operator!=(const M &rhs) const { return is_unit != rhs.is_unit or (!is_unit and a != rhs.a); } template * = nullptr> friend OStream &operator<<(OStream &os, const M &x) { if (x.is_unit) os << "-inf"; else os << x.a; return os; } template * = nullptr> friend IStream &operator>>(IStream &is, M &x) { is >> x.a; x.is_unit = false; return is; } }; } // namespace monoid } // namespace kk2 #endif // MATH_MONOID_MAX_HPP #ifndef KK2_MATH_MONOID_MIN_HPP #define KK2_MATH_MONOID_MIN_HPP 1 namespace kk2 { namespace monoid { template > struct Min { static constexpr bool commutative = true; using M = Min; S a; bool is_unit; Min() : a(S()), is_unit(true) {} Min(S a_) : a(a_), is_unit(false) {} operator S() const { return a; } inline static M op(M l, M r) { if (l.is_unit or r.is_unit) return l.is_unit ? r : l; return Compare{}(l.a, r.a) ? l : r; } inline static M unit() { return M(); } bool operator==(const M &rhs) const { return is_unit == rhs.is_unit and (is_unit or a == rhs.a); } bool operator!=(const M &rhs) const { return is_unit != rhs.is_unit or (!is_unit and a != rhs.a); } template * = nullptr> friend OStream &operator<<(OStream &os, const M &x) { if (x.is_unit) os << "inf"; else os << x.a; return os; } template * = nullptr> friend IStream &operator>>(IStream &is, M &x) { is >> x.a; x.is_unit = false; return is; } }; } // namespace monoid } // namespace kk2 #endif // KK2_MATH_MONOID_MIN_HPP #ifndef KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP #define KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP 1 namespace kk2 { template struct is_vector : std::false_type {}; template struct is_vector> : std::true_type {}; // コンテナかどうかを判定するtraits template struct is_container : std::false_type {}; // 基本的なコンテナ型の特殊化 template struct is_container> : std::true_type { }; template struct is_container> : std::true_type {}; template struct is_container> : std::true_type {}; template struct is_container> : std::true_type {}; template struct is_container> : std::true_type {}; // SFINAEでコンテナを判定するためのヘルパー template using is_container_t = typename std::enable_if_t::value, std::nullptr_t>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP namespace kk2 { template auto make_vector(int first, Sizes... sizes) { if constexpr (sizeof...(sizes) == 0) { return std::vector(first); } else { return std::vector(sizes...))>(first, make_vector(sizes...)); } } template void fill_all(std::vector &v, const U &x) { if constexpr (is_vector::value) { for (auto &u : v) fill_all(u, x); } else { std::fill(v.begin(), v.end(), T(x)); } } template int iota_all(std::vector &v, U x, int offset = 0) { if constexpr (is_vector::value) { for (auto &u : v) offset += iota_all(u, x + offset); } else { for (auto &u : v) u = x++, ++offset; } return offset; } template int mysize(const C &c) { return size(c); } // T: commutative monoid, F: (U, T) -> U template U all_monoid_prod(const std::vector &v, U unit, const F &f) { U res = unit; if constexpr (is_vector::value) { for (const auto &x : v) res = f(res, all_monoid_prod(x, unit, f)); } else { for (const auto &x : v) res = f(res, x); } return res; } template U all_sum(const std::vector &v, U unit = U()) { return all_monoid_prod(v, unit, [](U a, U b) { return a + b; }); } template U all_prod(const std::vector &v, U unit = U(1)) { return all_monoid_prod(v, unit, [](U a, U b) { return a * b; }); } template U all_xor(const std::vector &v, U unit = U()) { return all_monoid_prod(v, unit, [](U a, U b) { return a ^ b; }); } template U all_and(const std::vector &v, U unit = U(-1)) { return all_monoid_prod(v, unit, [](U a, U b) { return a & b; }); } template U all_or(const std::vector &v, U unit = U()) { return all_monoid_prod(v, unit, [](U a, U b) { return a | b; }); } template U all_min(const std::vector &v) { return all_monoid_prod, T>(v, monoid::Min::unit(), monoid::Min::op); } template U all_max(const std::vector &v) { return all_monoid_prod, T>(v, monoid::Max::unit(), monoid::Max::op); } template U all_gcd(const std::vector &v, U unit = U()) { return all_monoid_prod(v, unit, [](U a, U b) { return std::gcd(a, b); }); } template U all_lcm(const std::vector &v, U unit = U(1)) { return all_monoid_prod(v, unit, [](U a, U b) { return std::lcm(a, b); }); } } // namespace kk2 #endif // KK2_TEMPLATE_FUNCTION_UTIL_HPP #ifndef KK2_TEMPLATE_IO_UTIL_HPP #define KK2_TEMPLATE_IO_UTIL_HPP 1 // なんかoj verifyはプロトタイプ宣言が落ちる namespace impl { struct read { template inline static void all_read(IStream &is, T &x) { is >> x; } template inline static void all_read(IStream &is, std::pair &p) { all_read(is, p.first); all_read(is, p.second); } template inline static void all_read(IStream &is, std::vector &v) { for (T &x : v) all_read(is, x); } template inline static void all_read(IStream &is, std::array &a) { for (T &x : a) all_read(is, x); } }; struct write { template inline static void all_write(OStream &os, const T &x) { os << x; } template inline static void all_write(OStream &os, const std::pair &p) { all_write(os, p.first); all_write(os, ' '); all_write(os, p.second); } template inline static void all_write(OStream &os, const std::vector &v) { for (int i = 0; i < (int)v.size(); ++i) { if (i) all_write(os, ' '); all_write(os, v[i]); } } template inline static void all_write(OStream &os, const std::array &a) { for (int i = 0; i < (int)F; ++i) { if (i) all_write(os, ' '); all_write(os, a[i]); } } }; } // namespace impl template * = nullptr> IStream &operator>>(IStream &is, std::pair &p) { impl::read::all_read(is, p); return is; } template * = nullptr> IStream &operator>>(IStream &is, std::vector &v) { impl::read::all_read(is, v); return is; } template * = nullptr> IStream &operator>>(IStream &is, std::array &a) { impl::read::all_read(is, a); return is; } template * = nullptr> OStream &operator<<(OStream &os, const std::pair &p) { impl::write::all_write(os, p); return os; } template * = nullptr> OStream &operator<<(OStream &os, const std::vector &v) { impl::write::all_write(os, v); return os; } template * = nullptr> OStream &operator<<(OStream &os, const std::array &a) { impl::write::all_write(os, a); return os; } #endif // KK2_TEMPLATE_IO_UTIL_HPP #ifndef KK2_TEMPLATE_MACROS_HPP #define KK2_TEMPLATE_MACROS_HPP 1 #define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_) #define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i) #define rep3(i, a, b) for (long long i = (a); i < (long long)(b); ++i) #define repi2(i, a) for (long long i = (a) - 1; i >= 0; --i) #define repi3(i, a, b) for (long long i = (a) - 1; i >= (long long)(b); --i) #define overload3(a, b, c, d, ...) d #define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__) #define fi first #define se second #define all(p) begin(p), end(p) #endif // KK2_TEMPLATE_MACROS_HPP struct FastIOSetUp { FastIOSetUp() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } fast_io_set_up; auto &kin = std::cin; auto &kout = std::cout; auto (*kendl)(std::ostream &) = std::endl>; void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); } void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); } void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); } void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); } void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); } void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } std::istream &operator>>(std::istream &is, u128 &x) { std::string s; is >> s; x = 0; for (char c : s) { assert('0' <= c && c <= '9'); x = x * 10 + c - '0'; } return is; } std::istream &operator>>(std::istream &is, i128 &x) { std::string s; is >> s; bool neg = s[0] == '-'; x = 0; for (int i = neg; i < (int)s.size(); i++) { assert('0' <= s[i] && s[i] <= '9'); x = x * 10 + s[i] - '0'; } if (neg) x = -x; return is; } std::ostream &operator<<(std::ostream &os, u128 x) { if (x == 0) return os << '0'; std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } std::ostream &operator<<(std::ostream &os, i128 x) { if (x == 0) return os << '0'; if (x < 0) { os << '-'; x = -x; } std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } #endif // KK2_TEMPLATE_PROCON_HPP #ifndef KK2_TEMPLATE_DEBUG_HPP #define KK2_TEMPLATE_DEBUG_HPP 1 #ifndef KK2_TYPE_TRAITS_MEMBER_HPP #define KK2_TYPE_TRAITS_MEMBER_HPP 1 namespace kk2 { #define HAS_MEMBER_FUNC(member) \ template struct has_member_func_##member##_impl { \ template \ static std::true_type check(decltype(std::declval().member(std::declval()...)) *); \ template static std::false_type check(...); \ using type = decltype(check(nullptr)); \ }; \ template struct has_member_func_##member \ : has_member_func_##member##_impl::type {}; \ template using has_member_func_##member##_t = \ std::enable_if_t::value>; \ template using not_has_member_func_##member##_t = \ std::enable_if_t::value>; #define HAS_MEMBER_VAR(member) \ template struct has_member_var_##member##_impl { \ template static std::true_type check(decltype(std::declval().member) *); \ template static std::false_type check(...); \ using type = decltype(check(nullptr)); \ }; \ template struct has_member_var_##member \ : has_member_var_##member##_impl::type {}; \ template using has_member_var_##member##_t = \ std::enable_if_t::value>; \ template using not_has_member_var_##member##_t = \ std::enable_if_t::value>; HAS_MEMBER_FUNC(debug_output) HAS_MEMBER_FUNC(val) #undef HAS_MEMBER_FUNC #undef HAS_MEMBER_VAR } // namespace kk2 #endif // KK2_TYPE_TRAITS_MEMBER_HPP namespace kk2 { namespace debug { #ifdef KK2 template *> void output(OStream &os); template *> void output(OStream &os, const T &t); template *> void output(OStream &os, const std::vector &v); template *> void output(OStream &os, const std::vector> &d); template *> void output(OStream &os, const std::array &a); template *> void output(OStream &os, const std::pair &p); template *> void output(OStream &os, const std::queue &q); template *> void output(OStream &os, const std::priority_queue &q); template *> void output(OStream &os, const std::deque &d); template *> void output(OStream &os, const std::stack &s); template *> void output(OStream &os, const std::set &s); template *> void output(OStream &os, const std::multiset &s); template *> void output(OStream &os, const std::unordered_set &s); template *> void output(OStream &os, const std::unordered_multiset &s); template *> void output(OStream &os, const std::map &m); template *> void output(OStream &os, const std::unordered_map &m); template * = nullptr> void output(OStream &) {} template * = nullptr> void output(OStream &os, const T &t) { if constexpr (has_member_func_debug_output::value) { t.debug_output(os); } else { os << t; } } template * = nullptr> void output(OStream &os, const std::vector &v) { os << "["; for (int i = 0; i < (int)v.size(); i++) { output(os, v[i]); if (i + 1 != (int)v.size()) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::vector> &d) { os << "[\n"; for (int i = 0; i < (int)d.size(); i++) { output(os, d[i]); output(os, "\n"); } os << "]"; } template * = nullptr> void output(OStream &os, const std::array &a) { os << "["; for (int i = 0; i < (int)F; i++) { output(os, a[i]); if (i + 1 != (int)F) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::pair &p) { os << "("; output(os, p.first); os << ", "; output(os, p.second); os << ")"; } template * = nullptr> void output(OStream &os, const std::queue &q) { os << "["; std::queue tmp = q; while (!tmp.empty()) { output(os, tmp.front()); tmp.pop(); if (!tmp.empty()) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::priority_queue &q) { os << "["; std::priority_queue tmp = q; while (!tmp.empty()) { output(os, tmp.top()); tmp.pop(); if (!tmp.empty()) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::deque &d) { os << "["; std::deque tmp = d; while (!tmp.empty()) { output(os, tmp.front()); tmp.pop_front(); if (!tmp.empty()) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::stack &s) { os << "["; std::stack tmp = s; std::vector v; while (!tmp.empty()) { v.push_back(tmp.top()); tmp.pop(); } for (int i = (int)v.size() - 1; i >= 0; i--) { output(os, v[i]); if (i != 0) os << ", "; } os << "]"; } template * = nullptr> void output(OStream &os, const std::set &s) { os << "{"; std::set tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const std::multiset &s) { os << "{"; std::multiset tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const std::unordered_set &s) { os << "{"; std::unordered_set tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const std::unordered_multiset &s) { os << "{"; std::unordered_multiset tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const std::map &m) { os << "{"; std::map tmp = m; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, it->first); os << ": "; output(os, it->second); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const std::unordered_map &m) { os << "{"; std::unordered_map tmp = m; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, it->first); os << ": "; output(os, it->second); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template * = nullptr> void output(OStream &os, const T &t, const Args &...args) { output(os, t); os << ' '; output(os, args...); } template * = nullptr> void outputln(OStream &os) { os << '\n'; os.flush(); } template * = nullptr> void outputln(OStream &os, const T &t, const Args &...args) { output(os, t, args...); os << '\n'; os.flush(); } std::vector sep(const char *s) { std::vector res; std::string now; int dep = 0; while (true) { if (*s == '\0') { res.emplace_back(now); break; } if (*s == '(' or *s == '[' or *s == '{') dep++; if (*s == ')' or *s == ']' or *s == '}') dep--; if (dep == 0 and *s == ',') { res.emplace_back(now); now.clear(); } else if (!isspace(*s)) { now += *s; } s++; } return res; } void show_vars(const std::vector &, int) {} template void show_vars(const std::vector &name, int pos, const T &t, const Args &...args) { // assert(pos < (int)name.size()); output(std::cerr, name[pos++] + ":", t); if (sizeof...(args) > 0) output(std::cerr, ", "); show_vars(name, pos, args...); } #define kdebug(...) \ std::cerr << "line:" << __LINE__ << ' '; \ kk2::debug::show_vars(kk2::debug::sep(#__VA_ARGS__), 0, __VA_ARGS__); \ std::cerr << std::endl; #define kput(s) \ std::cerr << "line:" << __LINE__ << ' '; \ kk2::debug::outputln(std::cerr, s); #else template * = nullptr> void output(OStream &, const Args &...) {} template * = nullptr> void outputln(OStream &, const Args &...) {} template void fix_warn(const Args &...) {} #define kdebug(...) kk2::debug::fix_warn(__VA_ARGS__); #define kput(s) kk2::debug::fix_warn(s) #endif // KK2 } // namespace debug } // namespace kk2 #endif // KK2_TEMPLATE_DEBUG_HPP #ifndef KK2_GRAPH_GRAPH_HPP #define KK2_GRAPH_GRAPH_HPP 1 #ifndef KK2_GRAPH_EDGE_HPP #define KK2_GRAPH_EDGE_HPP 1 namespace kk2 { namespace graph { struct empty {}; template struct _Edge { int from, to, id; T cost; _Edge(int to_, T cost_, int from_ = -1, int id_ = -1) : from(from_), to(to_), id(id_), cost(cost_) {} _Edge() : from(-1), to(-1), id(-1) {} operator int() const { return to; } inline _Edge rev() const { return _Edge(from, cost, to, id); } template * = nullptr> void debug_output(OStream &os) const { os << '(' << id << ", " << from << "->" << to; if constexpr (!std::is_same_v) os << ":" << cost; os << ')'; } }; template struct _Edges : public std::vector<_Edge> { using std::vector<_Edge>::vector; template * = nullptr> _Edges &input(IStream &is, bool is_one_indexed = false) { for (int i = 0; i < (int)this->size(); i++) { int u, v; T w{}; is >> u >> v; if (is_one_indexed) --u, --v; if constexpr (!std::is_same_v) is >> w; (*this)[i] = _Edge(v, w, u, i); } return *this; } template * = nullptr> friend _Edges &input(_Edges &edges, IStream &is, bool is_one_indexed = false) { return edges.input(is, is_one_indexed); } template * = nullptr> void debug_output(OStream &os) const { os << '['; for (int i = 0; i < (int)this->size(); i++) { if (i) os << ", "; (*this)[i].debug_output(os); } os << ']'; } _Edges &add_edge(int from, int to, T cost = T{}) { this->emplace_back(to, cost, from, this->size()); return *this; } friend _Edges &add_edge(_Edges &edges, int from, int to, T cost = T{}) { edges.emplace_back(to, cost, from, edges.size()); return edges; } }; template struct _pair { T cost; int id; _pair(T cost_, int id_) : cost(cost_), id(id_) {} _pair() : cost(), id(-1) {} operator bool() const { return id != -1; } template * = nullptr> friend OStream &operator<<(OStream &os, const _pair &p) { if constexpr (std::is_same_v) return os; else return os << p.cost; } }; template using _pairs = std::vector<_pair>; } // namespace graph template using WEdge = graph::_Edge; template using WEdges = graph::_Edges; using Edge = graph::_Edge; using Edges = graph::_Edges; } // namespace kk2 #endif // KK2_GRAPH_EDGE_HPP namespace kk2 { namespace graph { template struct AdjacencyList { using value_type = T; using out_edge_type = _Edge; using out_edges = _Edges; using adjacency_container = std::vector; using edge_type = _Edge; using edge_collection = _Edges; static constexpr bool directed = is_directed; static constexpr bool weighted = !std::is_same_v; static constexpr bool adjacency_list = true; static constexpr bool adjacency_matrix = false; static constexpr bool static_graph = false; adjacency_container data; edge_collection edges; AdjacencyList() = default; AdjacencyList(int n_) : data(n_) {} // input を使うことが前提 AdjacencyList(int n_, int m_) : data(n_), edges(m_) {} AdjacencyList(int n_, const edge_collection &edges_) : data(n_), edges(edges_.size()) { for (auto &&e : edges_) _add_edge(e.from, e.to, e.cost, e.id); } inline int num_vertices() const { return data.size(); } inline int size() const { return data.size(); } inline int num_edges() const { return edges.size(); } out_edges &operator[](int k) { return data[k]; } const out_edges &operator[](int k) const { return data[k]; } void edge_clear() { *this = AdjacencyList(num_vertices()); } void add_edge(int from, int to, T cost = T{}) { _add_edge(from, to, cost, num_edges()); } void add_vertex(int n = 1) { data.insert(data.end(), n, out_edges()); } template * = nullptr> AdjacencyList &input(IStream &is, bool oneindexed = false) { for (int i = 0; i < num_edges(); i++) { int u, v; T w{}; is >> u >> v; if constexpr (weighted) is >> w; if (oneindexed) --u, --v; _add_edge(u, v, w, i); } return *this; } template * = nullptr> void debug_output(OStream &os) const { os << "[\n"; for (int i = 0; i < num_vertices(); i++) { os << " " << i << ": ["; for (size_t j = 0; j < data[i].size(); j++) { if (j) os << ", "; data[i][j].debug_output(os); } os << "]\n"; } os << "]\n"; } private: template void _add_edge(int from, int to, T cost, int id) { data[from].emplace_back(to, cost, from, id); if (!is_directed and from != to) data[to].emplace_back(from, cost, to, id); if constexpr (update) edges[id] = edge_type(to, cost, from, id); else edges.emplace_back(to, cost, from, id); } public: AdjacencyList reverse() const { AdjacencyList res(num_vertices(), num_edges()); for (auto &&e : edges) res._add_edge(e.to, e.from, e.cost, e.id); return res; } }; template struct AdjacencyMatrix { using value_type = T; using out_edge_type = _pair; using out_edges = _pairs; using adjacency_container = std::vector; using edge_type = _Edge; using edge_collection = _Edges; static constexpr bool directed = is_directed; static constexpr bool weighted = !std::is_same_v; static constexpr bool adjacency_list = false; static constexpr bool adjacency_matrix = true; static constexpr bool static_graph = false; adjacency_container data; edge_collection edges; AdjacencyMatrix() = default; AdjacencyMatrix(int n_) : data(n_, out_edges(n_)) {} // input を使うことが前提 AdjacencyMatrix(int n_, int m_) : data(n_, out_edges(n_)), edges(m_) {} AdjacencyMatrix(int n_, const edge_collection &edges_) : data(n_, out_edges(n_)), edges(edges_.size()) { for (auto &&e : edges_) _add_edge(e.from, e.to, e.cost, e.id); } inline int num_vertices() const { return data.size(); } inline int size() const { return data.size(); } inline int num_edges() const { return edges.size(); } out_edges &operator[](int k) { return data[k]; } const out_edges &operator[](int k) const { return data[k]; } void edge_clear() { *this = AdjacencyMatrix(num_vertices()); } void add_edge(int from, int to, T cost = T{}) { _add_edge(from, to, cost, num_edges()); } void add_vertex(int n = 1) { int now = num_vertices(); data.resize(now + n); for (auto &&d : data) d.resize(now + n); } template * = nullptr> AdjacencyMatrix &input(IStream &is, bool oneindexed = false) { for (int i = 0; i < num_edges(); i++) { int u, v; T w{}; is >> u >> v; if constexpr (weighted) is >> w; if (oneindexed) --u, --v; _add_edge(u, v, w, i); } return *this; } template * = nullptr> void debug_output(OStream &os) const { os << "[\n"; for (int i = 0; i < num_vertices(); i++) { os << " " << i << ": ["; for (size_t j = 0; j < data[i].size(); j++) { if (j) os << ", "; os << "(" << data[i][j].id << ", " << i << "->" << j; if constexpr (weighted) os << ": " << data[i][j].cost; os << ")"; } os << "]\n"; } os << "]\n"; } private: template void _add_edge(int from, int to, T cost, int id) { data[from][to] = out_edge_type(cost, id); if constexpr (!is_directed) data[to][from] = out_edge_type(cost, id); if constexpr (update) edges[id] = edge_type(to, cost, from, id); else edges.emplace_back(to, cost, from, id); } public: AdjacencyMatrix reverse() const { AdjacencyMatrix res(num_vertices(), num_edges()); for (auto &&e : edges) res._add_edge(e.to, e.from, e.cost, e.id); return res; } }; } // namespace graph template using WAdjList = graph::AdjacencyList; template using DWAdjList = graph::AdjacencyList; using AdjList = graph::AdjacencyList; using DAdjList = graph::AdjacencyList; template using WAdjMat = graph::AdjacencyMatrix; template using DWAdjMat = graph::AdjacencyMatrix; using AdjMat = graph::AdjacencyMatrix; using DAdjMat = graph::AdjacencyMatrix; } // namespace kk2 #endif // KK2_GRAPH_GRAPH_HPP using namespace std; void solve() { /* すべて葉っぱ,感染するまでの時間を求めればよい */ int n, m; kin >> n >> m; vc p(n); kin >> p; kk2::AdjList g(n, n - 1); g.input(kin, 1); vc c(m); kin >> c; rep (i, m) c[i]--; vc dist(n, -1); queue que; rep (i, m) { dist[c[i]] = 0; que.push(c[i]); } while (!que.empty()) { int v = que.front(); que.pop(); for (auto &&e : g[v]) { if (dist[e.to] != -1) continue; dist[e.to] = dist[v] + 1; que.push(e.to); } } kdebug(dist); vc deg(n); rep (i, n) deg[i] = g[i].size(); pq pqs; rep (i, n) if (deg[i] == 1) { pqs.emplace(p[i], i); } int now = 0; i64 res = 0; while (!pqs.empty()) { kdebug(now, pqs); auto [pure, v] = pqs.top(); pqs.pop(); if (dist[v] <= now) continue; now++; res += pure; for (auto e : g[v]) { if (--deg[e.to] == 1) pqs.emplace(p[e.to], e.to); } } kout << res << kendl; } int main() { #ifdef KK2 int t = 1; #else int t = 1; #endif // kin >> t; rep (t) solve(); return 0; } // Author: kk2 // converted by https://github.com/kk2a/cpp-bundle // 2025-08-01 22:48:51