// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; template using V = vector; template using VV = V>; template using VVV = V>; template using VVVV = VV>; #define rep(i,n) for(ll i=0ll;(i)<(n);(i)++) #define REP(i,a,n) for(ll i=(a);(i)<(n);(i)++) #define rrep(i,n) for(ll i=(n)-1;(i)>=(0ll);(i)--) #define RREP(i,a,n) for(ll i=(n)-1;(i)>=(a);(i)--) const long long INF = (1LL << 60); const long long mod99 = 998244353; const long long mod107 = 1000000007; const long long mod = mod99; #define eb emplace_back #define be(v) (v).begin(),(v).end() #define all(v) (v).begin(),(v).end() #define foa(i,v) for(auto& (i) : (v)) #define UQ(v) sort(be(v)), (v).erase(unique(be(v)), (v).end()) #define UQ2(v,cmp) sort(be(v)), (v).erase(unique(be(v),cmp), (v).end()) #define UQ3(v,cmp) sort(be(v),cmp), (v).erase(unique(be(v)), (v).end()) #define UQ4(v,cmp,cmp2) sort(be(v), cmp), (v).erase(unique(be(v),cmp2), (v).end()) #define LB(x,v) (lower_bound(be(v),(x))-(v).begin()) #define LB2(x,v,cmp) (lower_bound(be(v),(x),(cmp))-(v).begin()) #define UB(x,v) (upper_bound(be(v),(x))-(v).begin()) #define UB2(x,v,cmp) (upper_bound(be(v),(x),(cmp))-(v).begin()) #define dout() cout << fixed << setprecision(20) #define randinit() srand((unsigned)time(NULL)) template bool chmin(T& t, const U& u) { if (t > u){ t = u; return 1;} return 0; } template bool chmax(T& t, const U& u) { if (t < u){ t = u; return 1;} return 0; } ll Rnd(ll L=0, ll R=mod99){return rand()%(R-L)+L;} VV matmul(VV v, VV w, ll p=(1ll<<60)){ ll n1 = v.size(); ll n2 = w.size(); ll n3 = w[0].size(); VV ret(n1, V(n3, 0)); rep(i, n1) rep(j,n2) rep(k,n3) (ret[i][k] += v[i][j]*w[j][k]) %= p; return ret; } VV matpow(VV v, ll k, ll p){ if(k == 1) return v; ll n = v.size(); VV ret(n, V(n, 0)); rep(i, n) ret[i][i] = 1; if(k == 0) return ret; VV w = matpow(v, k/2, p); w = matmul(w, w, p); if(k%2) w = matmul(w, v, p); return w; } struct Combination{ vector fac, inv, finv; long long MOD; Combination(long long N = 200100, long long p = 998244353) : fac(N, 1), inv(N, 1), finv(N, 1), MOD(p){ for(long long i = 2; i < N; i++){ fac[i] = fac[i-1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD; finv[i] = finv[i-1] * inv[i] % MOD; } } long long com(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[k] % MOD * finv[n-k] % MOD; } long long per(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[n-k] % MOD; } }; long long modpow(long long n, long long k, long long p = mod){ long long a = n % p; long long ans = 1; while(k != 0) { if(k & 1) ans = ans * a % p; k /= 2; a = a * a % p; } return ans; } // n^(-1) ≡ b (mod p) となる b を求める long long modinv(long long n, long long p = mod) { // if(n == 1) return 1; // return p - modinv(p % n) * (p / n) % p; return modpow(n, p - 2, p); } // n^k ≡ b (mod p) となる最小の k を求める long long modlog(long long n, long long b, long long p = mod){ long long sqrt_p = sqrt(p); unordered_map n_pow; long long memo = 1; for(long long i = 0; i < sqrt_p; i ++){ if(!n_pow.count(memo)) n_pow[memo] = i; memo = memo * n % p; } memo = modinv(memo, p); long long ans = 0; while(!n_pow.count(b)){ if(ans >= p) return -1; ans += sqrt_p; b = b * memo % p; } ans += n_pow[b]; return ans % (p - 1); } // ax + by = gcd(a, b) を満たす (x, y) が格納される long long ext_gcd(long long a, long long b, long long &x, long long &y){ if(b == 0){ x = 1; y = 0; return a; } long long d = ext_gcd(b, a%b, y, x); y -= a/b*x; return d; } template struct segtree { vector seg; int seg_size, _n;//葉の数 segtree(int N) : seg(), seg_size(), _n(N) { seg_size = 1; while(seg_size < N) seg_size <<= 1; seg.resize(seg_size<<1, E()); } segtree(const vector a) : seg(), seg_size(), _n(a.size()) { int N = a.size(); seg_size = 1; while(seg_size < N) seg_size <<= 1; seg.resize(seg_size<<1, E()); for(int i=0; i 0; i --){ seg[i] = OP(seg[(i<<1)], seg[(i<<1)|1]); } } void set(int idx, T x){ idx += seg_size; seg[idx] = x; update(idx); } T get(int idx){ idx += seg_size; return seg[idx]; } void apply(int idx, T x){ idx += seg_size; seg[idx] = OP(seg[idx], x); update(idx); } void update(int idx){ while(idx > 1){ idx >>= 1; seg[idx] = OP(seg[idx<<1], seg[(idx<<1)|1]); } } T prod(int left, int right) { if(left < 0) left = 0; if(right > _n) right = _n; if(left > right) return E(); left += seg_size; right += seg_size; T retl= E(), retr = E(); { int L = left, R = right; while(L < R){ if(L&1){ retl = OP(retl, seg[L]); L++; } if(R&1){ R--; retr = OP(seg[R], retr); } L >>= 1; R >>= 1; } } return OP(retl, retr); } T all_prod(){ return seg[1]; } template int max_right(int left, F f) { if(left >= _n) return _n; if(left < 0) left = 0; T s = E(); left += seg_size; do{ while(left % 2 == 0) left >>= 1; if(!f(OP(s, seg[left]))){ while(left < seg_size){ left <<= 1; if(f(OP(s, seg[left]))){ s = OP(s, seg[left]); left++; } } return left - seg_size; } s = OP(s, seg[left]); left++; }while((left & (left-1))); return _n; }; template int min_left(int right, F f) { if(right <= 0) return 0; if(right >= _n) right = _n; T s = E(); right += seg_size; do{ while(right % 2 == 0) right >>= 1; if(right != 1) right --; if(!f(OP(seg[right], s))){ while(right < seg_size){ right <<= 1; right |= 1; if(f(OP(seg[right], s))){ s = OP(seg[right], s); right ^= 1; } } return right - seg_size; } s = OP(seg[right], s); }while((right & (right-1))); return 0; }; }; /* ll e(){return -INF;} ll op(ll L, ll R){return max(L, R);} */ ll K; VV op(VV a, VV b){return matmul(a,b,K);} VV e(){return {{1,0},{0,1}};} void solve(){ ll n; cin >> K >> n; VVV v; rep(i,n){ VV w(2, V(2)); rep(i,2) rep(j,2) cin >> w[i][j]; v.eb(w); } segtree,op,e> seg(v); ll q; cin >> q; rep(i,q){ ll x,l,r; cin >> x >> l >> r; l--; x--; VV w(2, V(2)); rep(i, 2) rep(j, 2) cin >> w[i][j]; seg.set(x, w); auto ans = seg.prod(l, r); rep(i, 2) rep(j, 2){ (ans[i][j] += K) %= K; cout << ans[i][j] << " \n"[j]; } } } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int t=1; // cin >> t; rep(i,t) solve(); }