def matrix_mult(A, B): H,W,K = len(A),len(B[0]),len(A[0]) ans = [[0]*W for _ in range(H)] for i in range(H): for j in range(W): for k in range(K): ans[i][j] += A[i][k]*B[k][j] return ans def matrix_pow(X, n, cnt): # print(f"in: id(cnt)={id(cnt)}") if n == 1: return X elif n%2 == 0: X2 = matrix_mult(X,X) cnt += 1 # print(f"cnt={cnt}") # print(f"in: id(cnt)={id(cnt)}") return matrix_pow(X2, n//2, cnt) else: cnt += 1 # print(f"cnt={cnt}") # print(f"in: id(cnt)={id(cnt)}") return matrix_mult(X, matrix_pow(X, n-1, cnt)) M = [list(map(int,input().split()))for _ in range(2)] s,t = map(int,input().split()) n,k=map(int,input().split()) M = matrix_pow(M, n, 0) # explist = [] # u = n # from math import log2 # while u > 1: # if u%2 == 0: # u //= 2 # explist.append(int(log2(u))) # else: # o = u // 2 # u = u - o # explist.append(int(log2(u))) # explist.reverse() # print(*explist) # i = 0 # for e in explist: # M = multiple_matrix(M) import numpy as np M = np.array(M) x = np.array([s,t]) ans = M@x for i in range(2): print(ans[i]%k,end=" ")