#include using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; #define rep(i,n) for(ll i=0;i T div_floor(T a, T b) { return a / b - ((a ^ b) < 0 && a % b); } template T div_ceil(T a, T b) { return a / b + ((a ^ b) > 0 && a % b); } template inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } namespace noya2 { template struct matrix { static constexpr int h = hw, w = hw; std::array m; matrix () : m({}) {} matrix (const std::array &_m) : m(_m) {} matrix (const std::array, hw> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } matrix (const std::vector> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret; for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[i*r.w+j] += m[idx(i,k)] * r.m[k*r.w+j]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(){ matrix ret; for (int i = 0; i < h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } friend bool operator==(const matrix &a, const matrix &b){ for (int i = 0; i < a.h; i++){ for (int j = 0; j < a.w; j++){ if (a[i][j] != b[i][j]){ return false; } } } return true; } }; template struct matrix { int h, w; std::vector m; matrix () {} matrix (int _h) : matrix(_h,_h) {} matrix (int _h, int _w) : h(_h), w(_w), m(_h*_w) {} matrix (int _h, int _w, const std::vector &_m) : h(_h), w(_w), m(_m) { assert((int)_m.size() == _h*_w); } matrix (const std::vector> &_m){ h = _m.size(); assert(h >= 1); w = _m[0].size(); for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret(h, r.w); for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(h); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(int _h){ auto ret = matrix(_h, _h); for (int i = 0; i < _h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } }; template T determinant(matrix mat){ int hw = mat.h; T ret = 1; for (int i = 0; i < hw; i++) { int idx = -1; for (int j = i; j < hw; j++) { if (mat[j][i] != 0) { idx = j; break; } } if (idx == -1) return 0; if (i != idx) { ret *= T(-1); for (int j = 0; j < hw; j++){ std::swap(mat[i][j],mat[idx][j]); } } ret *= mat[i][i]; T inv = T(1) / mat[i][i]; for (int j = 0; j < hw; j++) { mat[i][j] *= inv; } for (int j = i + 1; j < hw; j++) { T a = mat[j][i]; if (a == 0) continue; for (int k = i; k < hw; k++) { mat[j][k] -= mat[i][k] * a; } } } return ret; } } // namespace noya2 using namespace noya2; #include using namespace atcoder; using mint = modint; void solve() { ll K,N; cin>>K>>N; mint::set_mod(K); auto op=[](matrix x,matrix y)->matrix { return x*y; }; auto e=[]()->matrix { return matrix(2,2,{1,0,0,1}); }; auto scan=[](matrix &A){ ll a,b,c,d; cin>>a>>b>>c>>d; A=matrix(2,2,{a,b,c,d}); }; auto output=[&](matrix &A){ rep(i,2){ rep(j,2){ cout<> V(N); rep(i,N){ scan(V[i]); } segtree,op,e> st(V); ll Q; cin>>Q; rep(_,Q){ ll i,l,r; cin>>i>>l>>r; i--; l--; matrix Y; scan(Y); st.set(i,Y); auto res=st.prod(l,r); output(res); } return; } int main() { ll T=1; while (T--){ solve(); } return 0; }