// 入力制約/フォーマットチェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE #define USE_GETLINE #endif #ifdef INCLUDE_MAIN void Solve() { CEXPR( int , bound_N , 2e5 ); GETLINE_COUNT_ASSERT( N_str , ' ' , 1 ); STOI( N_str , N , 1 , bound_N ); GETLINE_COUNT_ASSERT( P_str , ' ' , N ); STOI_A( P_str , 0 , N , P , 1 , bound_N ); vector imP( N + 1 ); FOR( i , 0 , N ){ assert( !imP[P[i]] ); imP[P[i]] = true; } IntervalMinBIT bit{ N + 1 , N }; vector order( N ); FOR( i , 0 , N ){ int k = bit.Search( P[i] ); order[i] = N - k; bit.SetMin( N - 1 - order[i] , P[i] ); } vector> xy{}; FOR( i , 0 , N ){ while( order[i] >= len( xy ) ){ xy <<= {N,N}; } SetMin( xy[order[i]][O] , i ); SetMin( xy[order[i]][I] , P[i] ); } RUN( xy , [x,y] ){ COUT( x + 1 , y ); } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin // CEXPRがCEに依存しているので削除しない。 // redefinitionを避けるため圧縮元はincludeしない。 #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma& OP=(CO AbstractMagma&)NE;IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN AbstractNSet& AbstractNSet::operator=(CO AbstractNSet&)NE{RE *TH;}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN AbstractMagma& AbstractMagma::OP=(CO AbstractMagma&)NE{RE *TH;}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE RegularRSet(MAGMA magma)-> RegularRSet,MAGMA>;TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet& OP=(CO AbstractRSet&)NE;IN U Action(CO R& r,U u);};TE CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN AbstractRSet& AbstractRSet::OP=(CO AbstractRSet&)NE{RE *TH;}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::PW(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} TE CL VirtualMeetSemilattice:VI PU VirtualMonoid{PU:IN U Meet(U u0,CO U& u1);};TE CL MinSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MinSemilattice(U infty_U);IN U Product(U u0,CO U& u1);};TE CL MaxSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MaxSemilattice(U zero_U);IN U Product(U u0,CO U& u1);}; TE IN U VirtualMeetSemilattice::Meet(U u0,CO U& u1){RE TH->Product(MO(u0),u1);}TE IN MinSemilattice::MinSemilattice(U infty_U):PointedSet(MO(infty_U)){}TE IN MaxSemilattice::MaxSemilattice(U zero_U):PointedSet(MO(zero_U)){}TE IN U MinSemilattice::Product(U u0,CO U& u1){RE u0 < u1?MO(u0):u1;}TE IN U MaxSemilattice::Product(U u0,CO U& u1){RE u1 < u0?MO(u0):u1;} #define SFINAE_FOR_BIT_BS enable_if_t>* TE CL IdempotentMonoidBIT{PU:COMM_IDEM_MONOID m_M;int m_SZ;VE m_a;VE m_fenwick_0;VE m_fenwick_1;int m_pw;IN IdempotentMonoidBIT(COMM_IDEM_MONOID M,CRI SZ = 0);IN IdempotentMonoidBIT(COMM_IDEM_MONOID M,VE a);TE IN VO Initialise(Args&&... args);VO Set(CRI i,CO U& u);VO Multiply(CRI i,CO U& u);VO IntervalMultiply(CRI i_start,CRI i_final,CO U& u);IN CRI SZ()CO NE;IN CO U& OP[](CRI i)CO;IN CO U& Get(CRI i)CO;IN CO U& LSBSegmentProduct(CRI j,CO bool& left = true)CO;U IntervalProduct(CRI i_start,CRI i_final);TE int Search(CO F& f);int Search(CO U& u);IN VO COruct();};TE IdempotentMonoidBIT(COMM_IDEM_MONOID M)-> IdempotentMonoidBIT,COMM_IDEM_MONOID>;TE CL IntervalMaxBIT:PU IdempotentMonoidBIT>{PU:TE IN IntervalMaxBIT(CO U& zero_U,Args&&... args);IN VO SetMax(CRI i,CO U& u);IN VO IntervalSetMax(CRI i_start,CRI i_final,CO U& u);IN CO U& LSBSegmentMax(CRI j,CO bool& left = true)CO;IN U IntervalMax(CRI i_start,CRI i_final);};TE CL IntervalMinBIT:PU IdempotentMonoidBIT>{PU:TE IN IntervalMinBIT(CO U& infty_U,Args&&... args);IN VO SetMin(CRI i,CO U& u);IN VO IntervalSetMin(CRI i_start,CRI i_final,CO U& u);IN CO U& LSBSegmentMin(CRI j,CO bool& left = true)CO;IN U IntervalMin(CRI i_start,CRI i_final);}; TE IN IdempotentMonoidBIT::IdempotentMonoidBIT(COMM_IDEM_MONOID M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_a(SZ,m_M.One()),m_fenwick_0(m_SZ + 1,m_M.One()),m_fenwick_1(m_SZ + 1,m_M.One()),m_pw(1){COruct();}TE IN IdempotentMonoidBIT::IdempotentMonoidBIT(COMM_IDEM_MONOID M,VE a):m_M(MO(M)),m_SZ(a.SZ()),m_a(MO(a)),m_fenwick_0(m_SZ + 1),m_fenwick_1(m_SZ + 1),m_pw(1){COruct();for(int i = 0;i < m_SZ;i++){int j = i + 1;U& fenwick_0i = m_fenwick_0[j];fenwick_0i = m_a[i];CO int j_llim = j -(j & -j);j--;WH(j > j_llim){fenwick_0i = m_M.Product(m_fenwick_0[j],fenwick_0i);j -=(j & -j);}}for(int i = m_SZ - 1;i >= 0;i--){int j = i + 1;U& fenwick_1i = m_fenwick_1[j];fenwick_1i = m_a[i];CO int j_ulim = min(j +(j & -j),m_SZ + 1);j++;WH(j < j_ulim){fenwick_1i = m_M.Product(MO(fenwick_1i),m_fenwick_1[j]);j +=(j & -j);}}}TE TE IN IntervalMaxBIT::IntervalMaxBIT(CO U& zero_U,Args&&... args):IdempotentMonoidBIT>(MaxSemilattice(zero_U),forward(args)...){}TE TE IN IntervalMinBIT::IntervalMinBIT(CO U& infty_U,Args&&... args):IdempotentMonoidBIT>(MinSemilattice(infty_U),forward(args)...){}TE IN VO IdempotentMonoidBIT::COruct(){ST_AS(is_same_v>);WH(m_pw < m_SZ){m_pw <<= 1;}}TE TE IN VO IdempotentMonoidBIT::Initialise(Args&&... args){IdempotentMonoidBIT temp{m_M,forward(args)...};m_SZ = temp.m_SZ;m_a = MO(temp.m_a);m_fenwick_0 = MO(temp.m_fenwick_0);m_fenwick_1 = MO(temp.m_fenwick_1);m_pw = temp.m_pw;}TE VO IdempotentMonoidBIT::Set(CRI i,CO U& u){U& ai = m_a[i];if(u == m_M.Product(ai,u)){Multiply(i,u);}else{ai = u;int j = i + 1;int j_minus = j -(j & -j);U temp_left = m_M.Product(IntervalProduct(j_minus,i - 1),ai);U temp_right = m_M.One();WH(j <= m_SZ){m_fenwick_0[j]= m_M.Product(temp_left,temp_right);int j_next = j +(j & -j);int j_minus_next = j_next -(j_next & -j_next);if(j_minus_next != j_minus - 1){temp_left = m_M.Product(IntervalProduct(j_minus_next,j_minus - 1),temp_left);j_minus = j_minus_next;}temp_right = m_M.Product(MO(temp_right),IntervalProduct(j,j_next - 1));j = j_next;}j = i + 1;int j_plus = j +(j & -j)- 1;temp_left = m_M.One();temp_right = m_M.Product(ai,IntervalProduct(j,j_plus - 1));WH(j > 0){m_fenwick_1[j]= m_M.Product(temp_left,temp_right);int j_next = j -(j & -j);int j_plus_next = j_next +(j_next & -j_next)- 1;temp_left = m_M.Product(IntervalProduct(j_next - 1,j - 2),temp_left);j = j_next;if(j_plus != j_plus_next - 1){temp_right = m_M.Product(MO(temp_right),IntervalProduct(j_plus,j_plus_next - 1));j_plus = j_plus_next;}}}RE;}TE VO IdempotentMonoidBIT::Multiply(CRI i,CO U& u){U& ai = m_a[i];ai = m_M.Product(MO(ai),u);int j = i + 1;WH(j <= m_SZ){U& tj = m_fenwick_0[j];tj = m_M.Product(MO(tj),u);j +=(j & -j);}j = i + 1;WH(j > 0){U& tj = m_fenwick_1[j];tj = m_M.Product(MO(tj),u);j -=(j & -j);}RE;}TE VO IntervalMaxBIT::SetMax(CRI i,CO U& u){TH->Multiply(i,u);}TE VO IntervalMinBIT::SetMin(CRI i,CO U& u){TH->Multiply(i,u);}TE VO IdempotentMonoidBIT::IntervalMultiply(CRI i_start,CRI i_final,CO U& u){CO int j_min = max(i_start + 1,1);CO int j_max = min(i_final + 1,m_SZ);for(int i = j_min - 1;i < j_max;i++){U& ai = m_a[i];ai = m_M.Product(MO(ai),u);}CO int j_llim = j_min -(j_min & -j_min);CO int j_ulim = min(j_max +(j_max & j_max),m_SZ + 1);if(j_min <= j_max){int j = j_min;WH(j < j_ulim){if(j -(j & -j)< j_max){U& tj = m_fenwick_0[j];tj = m_M.Product(MO(tj),u);}j++;}j = j_max;WH(j > j_llim){if(j +(j & -j)> j_min){U& tj = m_fenwick_0[j];tj = m_M.Product(MO(tj),u);}j--;}}RE;}TE VO IntervalMaxBIT::IntervalSetMax(CRI i_start,CRI i_final,CO U& u){TH->IntervalMultiply(i_start,i_final,u);}TE VO IntervalMinBIT::IntervalSetMin(CRI i_start,CRI i_final,CO U& u){TH->IntervalMultiply(i_start,i_final,u);}TE IN CRI IdempotentMonoidBIT::SZ()CO NE{RE m_SZ;}TE IN CO U& IdempotentMonoidBIT::OP[](CRI i)CO{AS(0 <= i && i < m_SZ);RE m_a[i];}TE IN CO U& IdempotentMonoidBIT::Get(CRI i)CO{RE OP[](i);}TE IN CO U& IdempotentMonoidBIT::LSBSegmentProduct(CRI j,CO bool& left)CO{AS(0 < j && j <= m_SZ);RE(left?m_fenwick_0:m_fenwick_1)[j];}TE CO U& IntervalMaxBIT::LSBSegmentMax(CRI j,CO bool& left)CO{RE TH->LSBSegmentProduct(j,left);}TE CO U& IntervalMinBIT::LSBSegmentMin(CRI j,CO bool& left)CO{RE TH->LSBSegmentProduct(j,left);}TE U IdempotentMonoidBIT::IntervalProduct(CRI i_start,CRI i_final){CO int j_min = max(i_start + 1,1);CO int j_max = min(i_final + 1,m_SZ);if(j_min > j_max){RE m_M.One();}U AN1 = m_M.One();int j = j_min;int j_next = j +(j & -j);WH(j_next <= j_max){AN1 = m_M.Product(MO(AN1),m_fenwick_1[j]);j = j_next;j_next +=(j & -j);}AN1 = m_M.Product(MO(AN1),m_a[j-1]);U AN0 = m_M.One();j = j_max;j_next = j -(j & -j);WH(j_next >= j_min){AN0 = m_M.Product(MO(AN0),m_fenwick_0[j]);j = j_next;j_next -=(j & -j);}RE m_M.Product(MO(AN1),AN0);}TE U IntervalMaxBIT::IntervalMax(CRI i_start,CRI i_final){RE TH->IntervalProduct(i_start,i_final);}TE U IntervalMinBIT::IntervalMin(CRI i_start,CRI i_final){RE TH->IntervalProduct(i_start,i_final);}TE TE IN int IdempotentMonoidBIT::Search(CO F& f){int j = 0;int pw = m_pw;U product = m_M.One();U product_next = product;WH(pw > 0){int j_next = j | pw;if(j_next <= m_SZ){product_next = m_M.Product(product_next,m_fenwick_0[j_next]);if(f(product_next,j_next - 1)){product_next = product;}else{product = product_next;j = j_next;}}pw >>= 1;}RE j;}TE IN int IdempotentMonoidBIT::Search(CO U& u){RE Search([&](CO U& prod,CRI){RE prod == m_M.Product(prod,u);});}TE IN OS& OP<<(OS& os,CO IdempotentMonoidBIT& bit){auto&& SZ = bit.SZ();for(int i = 0;i < SZ;i++){(i == 0?os:os << " ")<< bit[i];}RE os;} // AAA ライブラリは以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ ) #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl int exec_mode = 0; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define CERRNS( ... ) #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #endif #include using namespace std; #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN; #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define PR1( A1 , ... ) A1 #define PR2( A1 , A2 , ... ) A2 #define PR3( A1 , A2 , A3 , ... ) A3 #define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR ) #define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; using path = pair; /* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/ // BinarySearch // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll ANSWER ## _L = MINIMUM; \ ll ANSWER ## _R = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ const ll CONST_TARGET_BS = ( CONST_TARGET ); \ ll DIFFERENCE_BS; \ while( ANSWER ## _L < ANSWER ## _R ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \ CERR( "二分探索中:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CONST_TARGET_BS , "=" , #CONST_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ ANSWER ## _R = UPDATE_U; \ } else { \ ANSWER ## _L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( ANSWER ## _L > ANSWER ## _R ){ \ CERR( "二分探索失敗:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , ">" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。 #define MIN_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) ) // 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。 #define MAX_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) ) // 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。 #define MAX_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) ) // 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。 #define MIN_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) ) template inline constexpr INT Mid( const INT& l , const INT& r ) { return l + ( ( r - l ) >> 1 ); } // TwoPoitnterApproach // VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。 // ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を // {INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。 // ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが // 条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか // VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの // 更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの // 更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる) // ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。 // 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合 // auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; }; // auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } }; // TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) ); // とすればtuple値配列intervalに{左端,右端,総和}の列が格納される。 // VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが // 大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。 #define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO_init ) \ vector> ANSWER{}; \ { \ auto init_TPA = INIT; \ decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO_init }; \ auto ANSWER ## _prev = ANSWER ## _temp; \ auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \ auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \ auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \ bool on_TPA_prev = false; \ while( true ){ \ bool continuing = CONTINUE_CONDITION; \ bool on_TPA = continuing && ( ON_CONDITION ); \ CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \ if( on_TPA_prev && ! on_TPA ){ \ ANSWER.push_back( ANSWER ## _prev ); \ CERR( #ANSWER , "に" , ANSWER ## _prev , "を格納します。" ); \ } \ if( continuing ){ \ if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ ANSWER ## _prev = ANSWER ## _temp; \ UPDATE_R; \ } else { \ UPDATE_L; \ } \ } else { \ break; \ } \ on_TPA_prev = on_TPA; \ } \ } \ // Random ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } // Set #define DECLARATION_OF_HASH( ... ) \ struct hash<__VA_ARGS__> \ { \ \ inline size_t operator()( const __VA_ARGS__& n ) const; \ \ }; \ #define DEFINITION_OF_POP_FOR_SET( SET ) \ template inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \ template inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \ template inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \ template inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward( u ) } ); return S; } \ template inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \ template inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \ template inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \ #define DEFINITION_OF_UNION_FOR_SET( SET ) \ template inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \ template inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \ class is_ordered { private: is_ordered() = delete; template static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() ); static constexpr false_type Check( ... ); public: template static constexpr const bool value = is_same_v< decltype( Check( declval() ) ) , true_type >; }; template using Set = conditional_t>,unordered_set,conditional_t,set,void>>; template inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); } template inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); } template inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); } template inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; } template