// 入力制約/フォーマットチェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE #define USE_GETLINE #endif #ifdef INCLUDE_MAIN void Solve() { CEXPR( int , bound_NQ , 2e5 ); GETLINE_COUNT_ASSERT( NQ_str , ' ' , 2 ); STOI( NQ_str , N , 1 , bound_NQ ); STOI( NQ_str , Q , 1 , bound_NQ ); GETLINE( S ); assert( len( S ) == N ); RUN( S , c ){ ASSERT( c , 'a' , 'z' ); } REPEAT( Q ){ GETLINE_COUNT( query_str , ' ' ); STOI( query_str , type , 1 , 2 ); if( type == 1 ){ assert( query_str_count == 3 ); STOI( query_str , k , 1 , N ); SEPARATE( query_str , x , " " ); assert( len( x ) == 1 ); RUN( x , c ){ ASSERT( c , 'a' , 'z' ); } } else { assert( query_str_count == 4 ); STOI( query_str , l , 1 , N ); STOI( query_str , r , l , N ); SEPARATE( query_str , a , " " ); assert( len( a ) == 3 ); RUN( a , c ){ ASSERT( c , 'a' , 'z' ); } } } RETURN( "WA" ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin // CEXPRがCEに依存しているので削除しない。 // redefinitionを避けるため圧縮元はincludeしない。 // Module // Graph // が必要な場合はここに追加する。 /* ConstexprModulo (7KB)*/ CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 2e6;ST CE CO uint g_memory_le = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order = M - 1;ST CE int g_order_minus = g_order - 1;}; #define SFINAE_FOR_MOD enable_if_t>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);CE Mod& OP^=(ll EX);CE Mod& OP<<=(ll n);CE Mod& OP>>=(ll n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);CE Mod OP^(ll EX)CO;CE Mod OP<<(ll n)CO;CE Mod OP>>(ll n)CO;CE Mod OP-()CO NE;CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(uint n)NE;ST IN CO Mod& Factorial(CRL n);ST IN CO Mod& FactorialInverse(CRL n);ST IN Mod Combination(CRL n,CRL i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;ST CE uint GetModulo()NE;CE Mod& SignInvert()NE;IN Mod& Invert();CE Mod& PPW(ll EX)NE;CE Mod& NNPW(ll EX)NE;ST IN CO Mod& Inverse(CRI n);ST IN CO Mod& TwoPower(CRI n);ST IN CO Mod& TwoPowerInverse(CRI n);US COants = COantsForMod;}; US MP = Mod

; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(Residue(MO(n))){}TE CE Mod& Mod::OP=(Mod n)NE{m_n = MO(n.m_n);RE *TH;}TE CE Mod& Mod::OP+=(CO Mod& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE CE Mod& Mod::OP-=(CO Mod& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE CE Mod& Mod::OP*=(CO Mod& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE CE Mod& Mod::PPW(ll EX)NE{Mod pw{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= pw:*TH;EX >>= 1;pw *= pw;}RE *TH;}TE CE Mod& Mod::NNPW(ll EX)NE{RE EX == 0?(m_n = 1,*TH):PPW(MO(EX));}TE CE Mod& Mod::OP^=(ll EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE NNPW(MO(neg?(EX %= COants::g_order)== 0?EX:EX += COants::g_order:EX));}TE CE Mod& Mod::OP<<=(ll n){RE *TH *=(n < 0 && -n < int(COants::g_memory_le))?TwoPowerInverse(- int(n)):(n >= 0 && n < int(COants::g_memory_le))?TwoPower(int(n)):Mod(2)^= MO(n);}TE CE Mod& Mod::OP>>=(ll n){RE *TH <<= MO(n *= -1);}TE CE Mod& Mod::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE CE Mod Mod::OP^(ll EX)CO{RE MO(Mod(*TH)^= MO(EX));}TE CE Mod Mod::OP<<(ll n)CO{RE MO(Mod(*TH)<<= MO(n));}TE CE Mod Mod::OP>>(ll n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_le?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_le)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NNPW(COants::g_order_minus);}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CRI n){AS(0 < n && n < int(COants::g_memory_le));ST VE> memory ={zero(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(DeRP(M - memory[M % le_curr].m_n * ull(M / le_curr)% M));le_curr++;}RE memory[n];}TE IN CO Mod& Mod::TwoPower(CRI n){AS(0 <= n && n < int(COants::g_memory_le));ST VE> memory ={one()};ST int le_curr = 1;WH(le_curr <= n){memory.push_back(memory.back()+ memory.back());le_curr++;}RE memory[n];}TE IN CO Mod& Mod::TwoPowerInverse(CRI n){AS(0 <= n && n < int(COants::g_memory_le));ST VE> memory ={one()};ST int le_curr = 1;WH(le_curr <= n){auto& m = memory.back().m_n;memory.push_back(DeRP(((m & 1)== 0?m:m + M)>> 1));le_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRL n){AS(n >= 0);if(ll(M)<= n){RE zero();}ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* le_curr);le_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRL n){AS(0 <= n && n < ll(M));ST VE> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* Inverse(le_curr));le_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRL n,CRL i){RE 0 <= i && i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(uint n)NE{Mod n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE CE uint Mod::GetModulo()NE{RE M;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod Power(Mod n,ll EX){RE MO(n ^= MO(EX));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN IS& OP>>(IS& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN OS& OP<<(OS& os,CO Mod& n){RE os << n.RP();} // AAA ライブラリは以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ ) #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl int exec_mode = 0; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define CERRNS( ... ) #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #endif #include using namespace std; #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN; #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define PR1( A1 , ... ) A1 #define PR2( A1 , A2 , ... ) A2 #define PR3( A1 , A2 , A3 , ... ) A3 #define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR ) #define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; using path = pair; /* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/ // BinarySearch // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll ANSWER ## _L = MINIMUM; \ ll ANSWER ## _R = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ const ll CONST_TARGET_BS = ( CONST_TARGET ); \ ll DIFFERENCE_BS; \ while( ANSWER ## _L < ANSWER ## _R ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \ CERR( "二分探索中:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CONST_TARGET_BS , "=" , #CONST_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ ANSWER ## _R = UPDATE_U; \ } else { \ ANSWER ## _L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( ANSWER ## _L > ANSWER ## _R ){ \ CERR( "二分探索失敗:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , ">" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。 #define MIN_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) ) // 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。 #define MAX_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) ) // 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。 #define MAX_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) ) // 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。 #define MIN_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) ) template inline constexpr INT Mid( const INT& l , const INT& r ) { return l + ( ( r - l ) >> 1 ); } // TwoPoitnterApproach // VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。 // ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を // {INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。 // ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが // 条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか // VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの // 更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの // 更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる) // ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。 // 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合 // auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; }; // auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } }; // TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) ); // とすればtuple値配列intervalに{左端,右端,総和}の列が格納される。 // VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが // 大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。 #define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO_init ) \ vector> ANSWER{}; \ { \ auto init_TPA = INIT; \ decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO_init }; \ auto ANSWER ## _prev = ANSWER ## _temp; \ auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \ auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \ auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \ bool on_TPA_prev = false; \ while( true ){ \ bool continuing = CONTINUE_CONDITION; \ bool on_TPA = continuing && ( ON_CONDITION ); \ CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \ if( on_TPA_prev && ! on_TPA ){ \ ANSWER.push_back( ANSWER ## _prev ); \ CERR( #ANSWER , "に" , ANSWER ## _prev , "を格納します。" ); \ } \ if( continuing ){ \ if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ ANSWER ## _prev = ANSWER ## _temp; \ UPDATE_R; \ } else { \ UPDATE_L; \ } \ } else { \ break; \ } \ on_TPA_prev = on_TPA; \ } \ } \ // Random ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } // Set #define DECLARATION_OF_HASH( ... ) \ struct hash<__VA_ARGS__> \ { \ \ inline size_t operator()( const __VA_ARGS__& n ) const; \ \ }; \ #define DEFINITION_OF_POP_FOR_SET( SET ) \ template inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \ template inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \ template inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \ template inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward( u ) } ); return S; } \ template inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \ template inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \ template inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \ #define DEFINITION_OF_UNION_FOR_SET( SET ) \ template inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \ template inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \ class is_ordered { private: is_ordered() = delete; template static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() ); static constexpr false_type Check( ... ); public: template static constexpr const bool value = is_same_v< decltype( Check( declval() ) ) , true_type >; }; template using Set = conditional_t>,unordered_set,conditional_t,set,void>>; template inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); } template inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); } template inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); } template inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; } template