#include #if __has_include() #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define RDVL(T,n,...) vec__VA_ARGS__;fe(refs(__VA_ARGS__),e)e.get().resizes(n);lin(__VA_ARGS__) #define VL(n,...) RDVL(ll,n,__VA_ARGS__) #define FO(n) for(ll IJK=n;IJK-->0;) #define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a) #define defpp templatevoid pp(const auto&...a){[[maybe_unused]]const char*c="";((o<(a...);} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ #define multiple_testcases LL(T);FO(T)main2();}void main2(){ namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<>...>>a);} auto Yes(bool p=1){return p?"Yes":"No";} constexpr auto abs(auto x){return x<0?-x:x;} constexpr auto pow(auto x,ll n,auto e){assert(n>=0);decltype(x)r=e;for(;n;x*=x,n>>=1)if(n&1)r*=x;return r;} constexpr auto pow(auto x,ll n){return pow(x,n,1);} templatecommon_type_tgcd(T a,U b){return b?gcd(b,a%b):abs(a);} auto mod(auto a,auto b){return(a%=b)<0?a+b:a;} auto inv_mod(auto x,auto m){assert(gcd(x,m)==1);decltype(x)a=mod(x,m),b=m,u=1,v=0;while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return mod(u,m);} auto pow_mod(auto x,auto n,auto m){ if(n<0)n=-n,x=inv_mod(x,m); decltype(x)r=1; while(n){ if(n&1)r=(i128)r*x%m; x=(i128)x*x%m; n>>=1; } return r; } i64 rand(){static i64 x=495;x^=x<<7;x^=x>>9;return x;} i64 rand(i64 l,i64 r=0){if(l>r)swap(l,r);return rand()%(r-l)+l;} templateusing pack_back_t=tuple_element_t>; } namespace my{ templateconcept vectorial=is_base_of_v::value_type>,remove_cvref_t>; templateistream&operator>>(istream&i,vector&v){fe(v,e)i>>e;return i;} templateconstexpr int depth=0; templateconstexpr int depth =depth+1; templatestruct core_t_helper{using type=T;}; templateusing core_t=core_t_helper::type; templatestruct vec; templatestruct hvec_helper{using type=vec::type>;}; templatestruct hvec_helper<0,T>{using type=T;}; templateusing hvec=hvec_helper::type; templatestruct vec:vector{ static constexpr int D=depth>; using C=core_t; using vector::vector; void resizes(const auto&...a){if constexpr(sizeof...(a)==D)*this=make(a...,C{});else{ }} static auto make(ll n,const auto&...a){ if constexpr(sizeof...(a)==1)return vec(n,array{a...}[0]); else { } } ll size()const{return vector::size();} auto&emplace_back(auto&&...a){vector::emplace_back(std::forward(a)...);return*this;} }; templaterequires(sizeof...(A)>=2)vec(const A&...a)->vec>>; } namespace my{ templatestruct montgomery64{ using modular=montgomery64; static inline ui64 N=998244353; static inline ui64 N_inv=996491785301655553ull; static inline ui64 R2=299560064; static int set_mod(ui64 N){ if(modular::N==N)return 0; assert(N<(1ull<<63)); assert(N&1); modular::N=N; R2=-ui128(N)%N; N_inv=N; FO(5)N_inv*=2-N*N_inv; assert(N*N_inv==1); return 0; } ui64 a; montgomery64(const i64&a=0):a(reduce((ui128)(a%(i64)N+N)*R2)){} static ui64 reduce(const ui128&T){ui128 r=(T+ui128(ui64(T)*-N_inv)*N)>>64;return r>=N?r-N:r;} auto&operator*=(const modular&b){a=reduce(ui128(a)*b.a);return*this;} friend bool operator==(const modular&a,const modular&b){return a.a==b.a;} modular pow(ui128 n)const{return my::pow(*this,n);} }; } namespace my{ bool miller_rabin(ll n,vecas){ ll d=n-1; while(~d&1)d>>=1; using modular=montgomery64<__COUNTER__>; modular::set_mod(n); modular one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; modular y=modular(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return 0; } return 1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin(n,{2,7,61}); return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022}); } } namespace my{ bool is_quadratic_residue_mod_prime(ll a,ll p){ a=mod(a,p); if(a==0)return 1; if(p==2)return 1; return pow_mod(a,(p-1)/2,p)==1; } // 参考 https://yukicoder.me/submissions/798604 bool is_square_montecarlo_prod(const vec&a){ static vecps; if(ps.empty()){ while(ps.size()<50){ ll n=rand(1e9); if(n==2)continue; if(is_prime(n))ps.eb(n); } } fe(ps,p){ ll A=1; fe(a,e)A=(lll)A*e%p; if(!is_quadratic_residue_mod_prime(A,p))return 0; } return 1; } } namespace my{entry void main(){ multiple_testcases LL(N); VL(N,a); pp(Yes(is_square_montecarlo_prod(a))); }}