from collections import defaultdict, deque, Counter from heapq import heappop, heappush from bisect import bisect_left, bisect_right ## gcd(x, y):最大公約数, lcm(x, y):最小公倍数, factorial(n):階乗n!, prem(n, k):nPk(n, k), comb(n, r):二項係数nCr from math import gcd, lcm, factorial, perm, comb # 0~9を並び替えるならpermutationsかconbinations,N列のカテゴリを作るにはproduct from itertools import product, permutations, combinations, accumulate from functools import lru_cache # @lru_cache(maxsize=128) import operator from string import ascii_uppercase, ascii_lowercase, digits # 英字(大文字), 英字(小文字), 数字 MOD = 998244353 def II(): return int(input()) def LI(): return list(input()) def LMI(): return list(map(int, input().split())) def LMS(): return list(map(str, input().split())) def LLMI(x): return [list(map(int, input().split())) for _ in range(x)] def LLMS(x): return [list(input()) for _ in range(x)] def CUM(x: list, func=None, initial: int = None) -> list: """ func:累積の仕方を指定する。 operator.mul:掛け算 operator.sub:引き算 max:最大値 min:最小値 initial:初期値, Noneならx[0]が第一引数の数値になる """ return list(accumulate(x, func=func, initial=initial)) def yesno(tf: bool): if tf: return print("Yes") else: return print("No") class UnionFind: def __init__(self, n): self.n = n self.parents = [-1] * n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[x] > self.parents[y]: x, y = y, x self.parents[x] += self.parents[y] self.parents[y] = x def size(self, x): return -self.parents[self.find(x)] def same(self, x, y): return self.find(x) == self.find(y) def members(self, x): root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): return len(self.roots()) def group(self): group_members = defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members def __str__(self): return "".join(f"{r}: {m}" for r, m in self.group().items()) def inverse_element(num: int): """ 逆元の作成 ax ≡ 1 (mod p)となるxは、fetmatの小定理より a * a^(p-2) ≡ 1 (mod p)であるため、 a^(p-2) (mod p) は逆元である """ return pow(num, MOD - 2, MOD) def make_graph(n: int, lmi: list, idx_0: bool = True, is_direct: bool = False): graph = [[] for _ in range(n)] for i in range(len(lmi)): a, b = lmi[i] if idx_0: a -= 1 b -= 1 # 有向グラフであれば1方向にappendする。 graph[a].append(b) if not is_direct: graph[b].append(a) return graph def bfs(n: int, graph: list[list[int]], s: int = 0, g: int = None): """ s:start地点、指定しなければ頂点0から g:goal地点、指定しなければ端まで """ start = (s, 0) d = deque([start]) TF = [False] * n while d: crr, cnt = d.popleft() TF[crr] = True # if crr == g: # return cnt for nxt in graph[crr]: if TF[nxt]: continue # d.append((nxt, cnt + 1)) TF[nxt] = True return -1 def dfs(n: int, graph: list[list[int]], s: int = 0, g: int = None): """ s:start地点、指定しなければ頂点0から g:goal地点、指定しなければ端まで """ start = (s, 0) d = deque([start]) TF = [False] * n while d: crr, cnt = d.pop() TF[crr] = True # if crr == g: # return cnt for nxt in graph[crr]: if TF[nxt]: continue # d.append((nxt, cnt + 1)) TF[nxt] = True def dijkstra(n: int, graph: list[list[int, int]], s: int = 0): """ s:start地点、指定しなければ頂点0から """ que = [] heappush(que, (0, s)) TF = [False] * n # 各頂点の最短経路を格納する ans = [0] * n while que: cnt, crr = heappop(que) if TF[crr]: continue # 最短経路確定 TF[crr] = True ans[crr] = cnt for nxt, val in graph[crr]: # 最短経路が確定しているところは除く if TF[nxt]: continue heappush(que, (cnt + val, nxt)) else: return ans def make_adjacency_matrix(n: int, nodes: list): matrix = [[float("INF")] * n for _ in range(n)] for node in nodes: v, m, c = node matrix[v][m] = c matrix[m][v] = c for i in range(n): matrix[i][i] = 0 return matrix def floyd_warchall_algorithm(n, matrix): """ n: [int]頂点の数 matrix: [list]隣接行列 """ for k in range(n): for i in range(n): for j in range(n): matrix[i][j] = min(matrix[i][j], matrix[i][k] + matrix[k][j]) return matrix def lis(A: list): length = 0 n = len(A) dp = [float("INF") for _ in range(n + 1)] dp[0] = -float("INF") for i in range(n): left = 0 right = n while right - left > 1: mid = (right + left) // 2 if dp[mid] < A[i]: left = mid else: right = mid dp[left + 1] = A[i] length = max(length, left + 1) return length def manacher(s): T = "#" + "#".join(s) + "#" n = len(T) P = [0] * n # 各位置での回文半径 C, R = 0, 0 # 中心位置Cと回文右端R for i in range(n): mirr = 2 * C - i # iの鏡像位置 if i < R: P[i] = min(R - i, P[mirr]) # 回文の中心を基準に左右に広げる a, b = i + P[i] + 1, i - P[i] - 1 while a < n and b >= 0 and T[a] == T[b]: P[i] += 1 a += 1 b -= 1 # 回文が右端を超えたら中心を更新 if i + P[i] > R: C, R = i, i + P[i] return P # 回文半径を返す def execute(): s = LI() t = list("kadomatsu") dp = [[0] * (len(t) + 1) for _ in range(len(s) + 1)] for i in range(1, len(s) + 1): for j in range(1, len(t) + 1): if s[i-1] == t[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) # print(dp) ans = dp[len(s)][len(t)] # print(ans) if len(s) == ans: print('Yes') else: print('No') if __name__ == "__main__": T = 1 for _ in range(T): execute()