#include using namespace std; //入力が必ず-mod struct modint{ //mod変更が不可能. public: long long v = 0; static void setmod(int m){} //飾り. static constexpr long long getmod(){return mod;} modint(){v = 0;} modint(int a){v = a<0?a+mod:a;} modint(long long a){v = a<0?a+mod:a;} modint(unsigned int a){v = a;} modint(unsigned long long a){v = a;} long long val()const{return v;} modint &operator=(const modint &b) = default; modint operator+()const{return (*this);} modint operator-()const{return modint(0)-(*this);} modint operator+(const modint b)const{return modint(v)+=b;} modint operator-(const modint b)const{return modint(v)-=b;} modint operator*(const modint b)const{return modint(v)*=b;} modint operator/(const modint b)const{return modint(v)/=b;} modint operator+=(const modint b){ v += b.v; if(v >= mod) v -= mod; return *this; } modint operator-=(const modint b){ v -= b.v; if(v < 0) v += mod; return *this; } modint operator*=(const modint b){v = v*b.v%mod; return *this;} modint operator/=(modint b){ //b!=0 mod素数が必須. if(b == 0) assert(false); int left = mod-2; while(left){if(left&1) *this *= b; b *= b; left >>= 1;} return *this; } modint operator++(){*this += 1; return *this;} modint operator--(){*this -= 1; return *this;} modint operator++(int){*this += 1; return *this;} modint operator--(int){*this -= 1; return *this;} bool operator==(const modint b)const{return v == b.v;} bool operator!=(const modint b)const{return v != b.v;} bool operator>(const modint b)const{return v > b.v;} bool operator>=(const modint b)const{return v >= b.v;} bool operator<(const modint b)const{return v < b.v;} bool operator<=(const modint b)const{return v <= b.v;} modint pow(long long n)const{ modint ret = 1,p = v; if(n < 0) p = p.inv(),n = -n; while(n){ if(n&1) ret *= p; p *= p; n >>= 1; } return ret; } modint inv()const{return modint(1)/v;} //素数mod必須. }; template //modが入力で与えられる場合. struct dynamic_modint{ //mod変更が可能 最初にsetmod必須 idxで複数個所持が可能. private: static int mod; public: long long v = 0; static constexpr long long getmod(){return mod;} static void setmod(int m){ assert(m > 0); mod = m; } dynamic_modint(){v = 0;} dynamic_modint(int a){v = a<0?a+mod:a;} dynamic_modint(long long a){v = a<0?a+mod:a;} dynamic_modint(unsigned int a){v = a;} dynamic_modint(unsigned long long a){v = a;} long long val()const{return v;} dynamic_modint &operator=(const dynamic_modint &b) = default; dynamic_modint operator+()const{return (*this);} dynamic_modint operator-()const{return dynamic_modint(0)-(*this);} dynamic_modint operator+(const dynamic_modint b)const{return dynamic_modint(v)+=b;} dynamic_modint operator-(const dynamic_modint b)const{return dynamic_modint(v)-=b;} dynamic_modint operator*(const dynamic_modint b)const{return dynamic_modint(v)*=b;} dynamic_modint operator/(const dynamic_modint b)const{return dynamic_modint(v)/=b;} dynamic_modint operator+=(const dynamic_modint b){ v += b.v; if(v >= mod) v -= mod; return *this; } dynamic_modint operator-=(const dynamic_modint b){ v -= b.v; if(v < 0) v += mod; return *this; } dynamic_modint operator*=(const dynamic_modint b){v = v*b.v%mod; return *this;} dynamic_modint operator/=(dynamic_modint b){ //b!=0 mod素数が必須. if(b == 0) assert(false); int left = mod-2; while(left){if(left&1) *this *= b; b *= b; left >>= 1;} return *this; } dynamic_modint operator++(){*this += 1; return *this;} dynamic_modint operator--(){*this -= 1; return *this;} dynamic_modint operator++(int){*this += 1; return *this;} dynamic_modint operator--(int){*this -= 1; return *this;} bool operator==(const dynamic_modint b)const{return v == b.v;} bool operator!=(const dynamic_modint b)const{return v != b.v;} bool operator>(const dynamic_modint b)const{return v > b.v;} bool operator>=(const dynamic_modint b)const{return v >= b.v;} bool operator<(const dynamic_modint b)const{return v < b.v;} bool operator<=(const dynamic_modint b)const{return v <= b.v;} dynamic_modint pow(long long n)const{ dynamic_modint ret = 1,p = v; if(n < 0) p = p.inv(),n = -n; while(n){ if(n&1) ret *= p; p *= p; n >>= 1; } return ret; } dynamic_modint inv()const{return dynamic_modint(1)/v;} //素数mod必須. }; template int dynamic_modint::mod=998244353; using mint = modint<998244353>; //using mint = modint<1000000007>; //using mint = dynamic_modint<0>; namespace to_fold{ __int128_t safemod(__int128_t a,long long m){a %= m; if(a < 0) a += m; return a;} pair invgcd(long long a,long long b){ //return {gcd(a,b),x} (xa≡g(mod b)) a = safemod(a,b); if(a == 0) return {b,0}; long long x = 0,y = 1,memob = b; while(a){ long long q = b/a; b -= a*q; swap(x,y); y -= q*x; swap(a,b); } if(x < 0) x += memob/b; return {b,x}; } template long long Garner(const vector &A,const vector &M){ __int128_t mulM = 1,x = A.at(0)%M.at(0); //Mの要素のペア互いに素必須. for(int i=1; i struct fftinfo{ static bool First; static mint g,sum_e[30],sum_ie[30]; //sum_e[i]=Π[j=0~i-1]ies[j] * es[i],sum_ie[i]=Π[i=0~j-1]es[j] * ies[i]. static mint divpow2[30]; //div[i] = 1/(2^i). static mint Zeta[30]; fftinfo(){ if(!First) return; First = false; const long long mod = mint::getmod(); if(mod == 998244353) g = 3; else if(mod == 754974721) g = 11; else if(mod == 167772161) g = 3; else if(mod == 469762049) g = 3; else assert(false); //現状RE. mint es[30],ies[30]; //es[i]^(2^(2+i))=1. int cnt2 = countzero(mod-1); mint e = g.pow((mod-1)>>cnt2),ie = e.inv(); for(int i=cnt2; i>=2; i--){ //e^(2^i)=1; es[i-2] = e,e *= e; ies[i-2] = ie,ie *= ie; } mint rot = 1; for(int i=0; i<=cnt2-2; i++) sum_e[i] = es[i]*rot,rot *= ies[i]; rot = 1; for(int i=0; i<=cnt2-2; i++) sum_ie[i] = ies[i]*rot,rot *= es[i]; mint div2n = 1,div2 = mint(1)/2; for(int i=0; i<30; i++) divpow2[i] = div2n,div2n *= div2; for(int i=0; i<=cnt2; i++) Zeta[i] = g.pow((mod-1)/(2< bool fftinfo::First=true; template mint fftinfo::g; template mint fftinfo::sum_e[30]; template mint fftinfo::sum_ie[30]; template mint fftinfo::divpow2[30]; template mint fftinfo::Zeta[30]; template void NTT(vector &A){ //ACLを超参考にしてる. int n = A.size(); assert((n&-n) == n); fftinfo info; int h = countzero(n); for(int ph=1; ph<=h; ph++){ int w = 1<<(ph-1),p = 1<<(h-ph); mint rot = 1; for(int s=0; s void INTT(vector &A){ int n = A.size(); assert((n&-n) == n); fftinfo info; const unsigned int mod = mint::getmod(); int h = countzero(n); for(int ph=h; ph>0; ph--){ int w = 1<<(ph-1),p = 1<<(h-ph); mint irot = 1; for(int s=0; s vector convolution(vector A,vector B){ //mintじゃないのを突っ込まないように!!!. int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1,N = 1; if(siza == 0 || sizb == 0) return {}; if(min(siza,sizb) <= 60){ //naive. vector ret(sizc); if(siza >= sizb){for(int i=0; i convolution_ll(const vector &A,const vector &B){ //long longに収まる範囲. int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1; if(siza == 0 || sizb == 0) return {}; vector ret(sizc); if(min(siza,sizb) <= 200){ //naive 200はやばい?. vector ret(sizc); if(siza >= sizb){for(int i=0; i; using mint2 = modint; using mint3 = modint; vector a1(siza),b1(sizb); vector a2(siza),b2(sizb); vector a3(siza),b3(sizb); for(int i=0; i C1 = convolution(a1,b1); for(int i=0; i C2 = convolution(a2,b2); for(int i=0; i C3 = convolution(a3,b3); vector offset = {0,0,m1m2m3,2*m1m2m3,3*m1m2m3}; for(int i=0; i vector convolution_llmod(const vector &A,const vector &B){ int siza = A.size(),sizb = B.size(),sizc = siza+sizb-1; if(siza == 0 || sizb == 0) return {}; vector ret(sizc); if(min(siza,sizb) <= 200){ for(int i=0; i; using mint2 = modint; using mint3 = modint; vector a1(siza),b1(sizb); vector a2(siza),b2(sizb); vector a3(siza),b3(sizb); for(int i=0; i C1 = convolution(a1,b1); for(int i=0; i C2 = convolution(a2,b2); for(int i=0; i C3 = convolution(a3,b3); for(int i=0; i A = {C1.at(i).v,C2.at(i).v,C3.at(i).v}; vector M = {mod1,mod2,mod3}; ret.at(i) = Garner(A,M); } return ret; } vector convolution_int(const vector &A,const vector &B){ //intに収まる範囲. if(A.size() == 0 || B.size() == 0) return {}; vector ret; if(min(A.size(),B.size()) <= 60){ ret.resize(A.size()+B.size()-1); for(int i=0; i; vector X(A.size()),Y(B.size()),Z; for(int i=0; i void NTTdoubling(vector &A){ //NTTの原理を忘れているため何やってるのか意味が分からない NTT-friendly専用. //INTT->resize(2倍)->NTTの代わりにcopy->INTT->謎の操作->NTT->push sizeが小さい時は効率悪いらしいよ. int n = A.size(); fftinfo info; vector B = A; INTT(B); mint rot = 1,zeta = info.Zeta[countzero(n)]; for(auto &v : B) v *= rot,rot *= zeta; NTT(B); A.reserve(n<<1); for(auto &v : B) A.push_back(v); } bool isNTTfriendly(long long mod){ if(mod == 998244353 || mod == 754974721 || mod == 16777216 || mod == 469762049) return true; return false; //現状false 原子根求める機能を追加してから. int have2 = countzero(mod-1); return have2 >= 20;//とりあえず2^20でokとする; } } using namespace to_fold; using SS = mint; class SegmentTree{ public: int siz = -1,n = -1; vector dat; SS op(SS a, SS b){return a+b;} SS e(){return mint(0);} void renew (SS &a,SS x){ a = op(a,x); //a = x; //set(pos,x)で可能. //その他. } SegmentTree(int N){init(N);} SegmentTree(const vector &A){//長さ配列サイズに合わせる. siz = 1; n = A.size(); while(siz < n) siz *= 2; dat.resize(siz*2,e()); for(int i=0; i0; i--) dat.at(i) = op(dat.at(i*2),dat.at(i*2+1)); } void init(int N){ //全要素単位元に初期化. siz = 1; n = N; while(siz < n) siz *= 2; dat.assign(siz*2,e()); } void init(const vector &A){//長さ配列サイズに合わせる. siz = 1; n = A.size(); while(siz < n) siz *= 2; dat.resize(siz*2,e()); for(int i=0; i0; i--) dat.at(i) = op(dat.at(i*2),dat.at(i*2+1)); } void set(int pos,SS x){ pos = pos+siz; dat.at(pos) = x; while(pos != 1){ pos = pos/2; dat.at(pos) = op(dat.at(pos*2),dat.at(pos*2+1)); } } void update(int pos,SS x){ pos = pos+siz; renew(dat.at(pos),x); while(pos != 1){ pos = pos/2; dat.at(pos) = op(dat.at(pos*2),dat.at(pos*2+1)); } } SS findans(int l, int r){ SS retl = e(),retr = e(); l += siz,r += siz; while(l < r){ if(l&1) retl = op(retl,dat.at(l++)); if(r&1) retr = op(dat.at(--r),retr); l >>= 1; r >>= 1; } return op(retl,retr); } SS get(int pos){return dat.at(pos+siz);} SS rangeans(int l, int r){return findans(l,r);} SS allrange(){return dat.at(1);} //rightは) leftは[で 渡す&返す. int maxright(const function f,int l = 0){ //fを満たさない最小の箇所を返す なければn. l += siz; int r = n+siz; vector ls,rs; while(l < r){ if(l&1) ls.push_back(l++); if(r&1) rs.push_back(--r); l >>= 1; r >>= 1; } SS okl = e(); for(int i=0; i=0; i--){ l = rs.at(i); SS now = op(okl,dat.at(l)); if(!f(now)){ while(l < siz){ l <<= 1; now = op(okl,dat.at(l)); if(f(now)){okl = now; l++;} } return l-siz; } okl = now; } return n; } int minleft(const function f,int r = -1){ //fを満たす最小の箇所を返す なければ0. if(r == -1) r = n; int l = siz; r += siz; vector ls,rs; while(l < r){ if(l&1) ls.push_back(l++); if(r&1) rs.push_back(--r); l >>= 1; r >>= 1; } SS okr = e(); for(int i=0; i=0; i--){ r = ls.at(i); SS now = op(dat.at(r),okr); if(!f(now)){ while(r < siz){ r <<= 1; r++; now = op(dat.at(r),okr); if(f(now)){okr = now; r--;} } return r+1-siz; } okr = now; } return 0; } }; int main(){ ios_base::sync_with_stdio(false); cin.tie(nullptr); auto f = [&](vector A) -> vector { int N = A.size(); vector two(N),minus(N); for(int i=0; i ret(N+1); for(int i=0; i> N >> K; vector A(N); int two = 0,under0 = 0; for(auto &a : A) cin >> a,two += abs(a)==2,under0 += a<0; if(two == 0 || two%3 || under0%2){cout << "0\n"; return 0;} vector powK(N+1); for(int i=0; i<=N; i++) powK.at(i) = mint(i).pow(K); auto B = A; reverse(B.begin(),B.end()); auto L = f(A),R = f(B); reverse(R.begin(),R.end()); vector> LR(two+1); { LR.at(0) = {0,1}; int pos = 0; for(int i=0; i X(n),Y(m); int pos = 0; for(int p=r1-1; p>=l1; p--) X.at(pos) = L.at(p),pos++; pos = 0; for(int p=l2; p