def test_miller_rabin(n: int, bases: list): nn = n - 1 e = (nn & -nn).bit_length() - 1 o = n >> e assert n == (o << e | 1) for b in bases: x = pow(b, o, n) if x == 1: continue for _ in range(e): y = pow(x, 2, n) if y == 1: if x == n - 1: break else: # nontrivial sqrt(1) found return False x = y else: return False return True def is_prime(n: int): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n == p: return True if n % p == 0: return False if n < 41**2: return True if n < 2047: return test_miller_rabin(n, [2]) if n < 90_80191: return test_miller_rabin(n, [31, 73]) if n < 47591_23141: return test_miller_rabin(n, [2, 7, 61]) if n < 112_20046_69633: return test_miller_rabin(n, [2, 13, 23, 16_62803]) if n < 3_77057_95821_54547: return test_miller_rabin(n, [2, 8_80937, 25_70940, 6103_86380, 41307_85767]) if n < 2**64: test_miller_rabin(n, [2, 325, 9375, 28178, 450775, 9780504, 17952_65022]) if n < 18446744073709551616: return test_miller_rabin(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) if n < 318665857834031151167461: return test_miller_rabin(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]) if n < 3317044064679887385961981: return test_miller_rabin(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]) assert False def solve(n: int): d = {4: 3, 6: 5, 8: 7, 9: 7, 10: 7, 12: 11, 14: 13, 15: 7, 16: 7, 20: 19, 21: 19, 22: 7, 24: 23, 25: 23} if n in d: return d[n] if n % 8 == 1 and is_prime(n - 8): return 14 return 8 case_t = 1 # case_t = int(input()) for _ in [None] * case_t: n = int(input()) ans = solve(n) print(ans)