#include namespace { #pragma GCC diagnostic ignored "-Wunused-function" #include #pragma GCC diagnostic warning "-Wunused-function" using namespace std; using namespace atcoder; #define rep(i,n) for(int i = 0; i < (int)(n); i++) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; i--) #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) template bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } else return false; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return true; } else return false; } using ll = long long; using P = pair; using VI = vector; using VVI = vector; using VL = vector; using VVL = vector; using mint = modint998244353; pair, vector> primes_lpf(const int n) { vector primes; primes.reserve(n / 10); vector lpf(n + 1); for (int i = 2; i <= n; i += 2) lpf[i] = 2; for (int i = 3; i <= n; i += 6) lpf[i] = 3; if (2 <= n) primes.push_back(2); if (3 <= n) primes.push_back(3); // 5 * x <= n, x <= floor(n / 5) const int n5 = n / 5; int x = 5; char add_next = 2; for (; x <= n5; x += add_next, add_next ^= 0x2 ^ 4) { int px = lpf[x]; if (px == 0) { lpf[x] = px = x; primes.push_back(x); } for (int i = 2;; ++i) { int q = primes[i]; int y = q * x; if (y > n) break; lpf[y] = q; if (q == px) break; } } for (; x <= n; x += add_next, add_next ^= 0x2 ^ 4) { if (lpf[x] == 0) { lpf[x] = x; primes.push_back(x); } } return {move(primes), move(lpf)}; } constexpr int PSIZE = 1000000; auto [primes, lpf] = primes_lpf(PSIZE); vector>& factorize_lv(int x) { int ps[10], cs[10]; int sz = 0; while (x != 1) { int p = lpf[x], c = 0; do {x /= p; c++;} while (x % p == 0); ps[sz] = p; cs[sz] = c; sz++; } static vector> fs; fs.clear(); for (int i = 0; i < sz; i++) fs.emplace_back(ps[i], cs[i]); return fs; } struct HLD { const vector>& to; int root, n; vector sz, parent, depth, idx, ridx, head, inv; HLD(const vector>& to, int root=0) : to(to), root(root), n(to.size()), sz(n), parent(n), depth(n), idx(n), ridx(n), head(n), inv(n) { init_tree_data(root, -1, 0); int nxt = 0; assign_idx(root, root, nxt); } void init_tree_data(int u, int p, int d) { parent[u] = p; depth[u] = d; int s = 1; for (int v: to[u]) if (v != p) { init_tree_data(v, u, d+1); s += sz[v]; } sz[u] = s; } void assign_idx(int u, int h, int& nxt, int p=-1) { head[u] = h; idx[u] = nxt; inv[nxt] = u; nxt++; int heaviest = -1; int mxweight = 0; for (int v: to[u]) if (v != p) { if (sz[v] > mxweight) { heaviest = v; mxweight = sz[v]; } } if (heaviest != -1) { assign_idx(heaviest, h, nxt, u); for (int v: to[u]) if (v != p && v != heaviest) { assign_idx(v, v, nxt, u); } } ridx[u] = nxt; } int lca(int u, int v) { while (head[u] != head[v]) { if (depth[head[u]] > depth[head[v]]) { u = parent[head[u]]; } else { v = parent[head[v]]; } } return depth[u] < depth[v] ? u : v; } // returns reference to tuple of (path fragments from x upto lca (excluding lca), those from y, lca) // storage of retval is reused to avoid creating short vectors on each query tuple>, vector>, int> paths_res; auto& paths(int x, int y) { auto& [x_paths, y_paths, lca] = paths_res; x_paths.clear(); y_paths.clear(); while (head[x] != head[y]) { int hx = head[x], hy = head[y]; if (depth[hx] > depth[hy]) { x_paths.emplace_back(x, hx); x = parent[hx]; } else { y_paths.emplace_back(y, hy); y = parent[hy]; } } if (depth[x] > depth[y]) { x_paths.emplace_back(x, inv[idx[y] + 1]); x = y; } else if (depth[x] < depth[y]) { y_paths.emplace_back(y, inv[idx[x] + 1]); y = x; } lca = x; return paths_res; } int dist(int u, int v) { int w = lca(u, v); return depth[u] + depth[v] - 2 * depth[w]; } template int max_ancestor(int v, F f) { if (!f(v)) return -1; int hv = head[v]; int p = parent[hv]; while (p != -1 && f(p)) { v = p; hv = head[v]; p = parent[hv]; } int il = idx[hv] - 1, ir = idx[v]; while (ir - il > 1) { int ic = (il + ir) / 2; (f(inv[ic]) ? ir : il) = ic; } return inv[ir]; } int ascend(int v, int k) { assert(depth[v] >= k); int td = depth[v] - k; int hv = head[v]; while (depth[hv] > td) { v = parent[hv]; hv = head[v]; } int rest = depth[v] - td; return inv[idx[v] - rest]; } int move_to(int u, int v, int by) { int l = lca(u, v); int du = depth[u] - depth[l]; int dv = depth[v] - depth[l]; assert(by <= du + dv); if (by <= du) return ascend(u, by); else return ascend(v, du + dv - by); } }; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; VI a(n); rep(i, n) cin >> a[i]; VVI to(n); rep(_, n - 1) { int u, v; cin >> u >> v; u--, v--; to[u].emplace_back(v); to[v].emplace_back(u); } HLD hld(to); static VI idx[1000010]; rep(i, n) idx[a[i]].emplace_back(i); VI id; vector ans(n); rep(i, n) ans[i] = a[i]; for (int p : primes) { mint inv = mint(p).inv(); for (int pk = 1; !__builtin_mul_overflow(pk, p, &pk) && pk <= 1000000;) { id.clear(); for (int v = pk; v <= 1000000; v += pk) { id.insert(id.end(), all(idx[v])); } ranges::sort(id, {}, [&](int u) { return hld.idx[u]; }); int sz = id.size(); rep(i, sz - 1) { int l = hld.lca(id[i], id[i+1]); ans[l] *= inv; } } } for (int u : hld.inv | views::reverse) if (u != 0) ans[hld.parent[u]] *= ans[u]; for (mint x : ans) cout << x.val() << '\n'; }