#if __INCLUDE_LEVEL__ == 0 #include __BASE_FILE__ using Mint = atcoder::modint998244353; void Solve() { int n; IN(n); vector a(n); IN(a); int A = ranges::max(a); for (int _ : Rep(0, n - 1)) { int i, j; IN(i, j); --i, --j; CsrArray::Add(i, j); CsrArray::Add(j, i); } auto g = CsrArray::Build(n); linear_sieve::init(A); for (int i : Rep1(2, A)) { int prv = -1; int len = 0; for (int p : linear_sieve::factor(i)) { if (p != prv) { if (prv != -1) { CsrArray>::Add(i, {prv, len}); } prv = p; len = 1; } else { ++len; } } CsrArray>::Add(i, {prv, len}); } auto factors = CsrArray>::Build(A + 1); for (int p : linear_sieve::primes) { int prod = 1; for (int e = 0;; ++e) { CsrArray::Add(p, prod); if (prod > A / p) { break; } prod *= p; } } auto pw = CsrArray::Build(A + 1); vector out(n); vector> f(n); vector cur(n); Fix([&](auto self, int i, int pv) -> void { for (auto [p, e] : factors[a[i]]) { f[i][p] = e; } cur[i] = a[i]; for (int j : g[i]) { if (j == pv) { continue; } self(j, i); if (Sz(f[i]) < Sz(f[j])) { f[i].swap(f[j]); swap(cur[i], cur[j]); } for (auto [p, e] : f[j]) { auto it = f[i].find(p); if (it != f[i].end()) { int ei = it->second; if (ei < e) { it->second = e; cur[i] *= pw[p][e - ei]; } else { continue; } } else { f[i][p] = e; cur[i] *= pw[p][e]; } } } out[i] = cur[i]; })(0, -1); ranges::for_each(out, LIFT(OUT)); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); Solve(); } #elif __INCLUDE_LEVEL__ == 1 #include #include template class CsrArray { public: static void Reserve(int m) { buf_.reserve(m); } static void Add(int i, T x) { buf_.emplace_back(i, std::move(x)); } static CsrArray Build(int n) { CsrArray ret; ret.pos_.resize(n + 1); for (int i : buf_ | std::views::keys) { ++ret.pos_[i]; } std::partial_sum(ret.pos_.begin(), ret.pos_.end(), ret.pos_.begin()); ret.data_.resize(ret.pos_[n]); for (auto& [i, x] : buf_ | std::views::reverse) { ret.data_[--ret.pos_[i]] = std::move(x); } buf_.clear(); return ret; } int size() const { return int(pos_.size()) - 1; } auto operator[](int i) { return std::span(data_.data() + pos_[i], data_.data() + pos_[i + 1]); } auto operator[](int i) const { return std::span(data_.data() + pos_[i], data_.data() + pos_[i + 1]); } private: static thread_local inline std::vector> buf_; std::vector data_; std::vector pos_; }; #include struct Splitmix64Hash { using u64 = std::uint64_t; static u64 splitmix64(u64 x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } u64 operator()(u64 x) const { static const u64 r = std::chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + r); } }; template using HashMap = __gnu_pbds::gp_hash_table; template using HashSet = HashMap; template class Fix { public: explicit Fix(F f) : f_(std::move(f)) {} template decltype(auto) operator()(Ts&&... xs) { return f_(std::ref(*this), std::forward(xs)...); } template decltype(auto) operator()(Ts&&... xs) const { return f_(std::ref(*this), std::forward(xs)...); } private: F f_; }; template concept MyRange = std::ranges::range && !std::convertible_to; template concept MyTuple = std::__is_tuple_like::value && !MyRange; namespace std { istream& operator>>(istream& is, MyRange auto&& r) { for (auto&& e : r) is >> e; return is; } istream& operator>>(istream& is, MyTuple auto&& t) { apply([&](auto&... xs) { (is >> ... >> xs); }, t); return is; } ostream& operator<<(ostream& os, MyRange auto&& r) { auto sep = ""; for (auto&& e : r) os << exchange(sep, " ") << e; return os; } ostream& operator<<(ostream& os, MyTuple auto&& t) { auto sep = ""; apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t); return os; } template * = nullptr> istream& operator>>(istream& is, T& x) { int v; is >> v; x = T::raw(v); return is; } template * = nullptr> ostream& operator<<(ostream& os, const T& x) { return os << x.val(); } } // namespace std namespace linear_sieve { std::vector primes, lpf; void init(int n) { if (n < int(std::size(lpf))) return; if (n < 2 * int(std::size(lpf))) n = 2 * std::size(lpf); lpf.resize(n + 1, -1); for (int d = 2; d <= n; ++d) { if (lpf[d] == -1) lpf[d] = d, primes.push_back(d); for (int p : primes) { if (p * d > n or p > lpf[d]) break; lpf[p * d] = p; } } } std::vector factor(int n) { __glibcxx_assert(n >= 1); std::vector res; for (init(n); n > 1; n /= res.back()) res.push_back(lpf[n]); return res; } } // namespace linear_sieve using namespace std; #define _ _ [[maybe_unused]] #define LIFT(f) ([&](auto&&... xs) -> decltype(auto) { return f(forward(xs)...); }) #define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__) #define Rep1(...) [](int l, int r) { return Rep(l, r + 1); }(__VA_ARGS__) #define Sz(r) int(size(r)) #define IN(...) (cin >> forward_as_tuple(__VA_ARGS__)) #define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n') #endif // __INCLUDE_LEVEL__ == 1