#include using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; template using MaxHeap = std::priority_queue; template using MinHeap = std::priority_queue, greater>; #define rep2(i, n) for (ll i = 0; i < (n); i++) #define rep3(i, l, r) for (ll i = (l); i < (r); i++) #define rrep2(i, n) for (ll i = n; i-- > 0;) #define rrep3(i, r, l) for (ll i = (r); i-- > (l);) #define overload(a, b, c, d, ...) d #define rep(...) overload(__VA_ARGS__, rep3, rep2)(__VA_ARGS__) #define rrep(...) overload(__VA_ARGS__, rrep3, rrep2)(__VA_ARGS__) #define all(x) begin(x), end(x) bool chmin(auto& lhs, auto rhs) { return lhs > rhs ? lhs = rhs, 1 : 0; } bool chmax(auto& lhs, auto rhs) { return lhs < rhs ? lhs = rhs, 1 : 0; } struct IOIO { IOIO() { std::cin.tie(0)->sync_with_stdio(0); } } ioio; #include #include #include /// brief : aclベースのmodint. cin, coutによる入出力に対応. namespace nono { namespace internal { namespace modint { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` explicit barrett(unsigned int m): _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); unsigned long long y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a: bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace modint } // namespace internal } // namespace nono namespace nono { template * = nullptr> struct StaticModint { using Mint = StaticModint; public: static constexpr int mod() { return m; } static Mint raw(int v) { Mint x; x._v = v; return x; } StaticModint(): _v(0) {} template * = nullptr> StaticModint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> StaticModint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } Mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } Mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } Mint operator++(int) { Mint result = *this; ++*this; return result; } Mint operator--(int) { Mint result = *this; --*this; return result; } Mint& operator+=(const Mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } Mint& operator-=(const Mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } Mint& operator*=(const Mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } Mint& operator/=(const Mint& rhs) { return *this = *this * rhs.inv(); } Mint operator+() const { return *this; } Mint operator-() const { return Mint() - *this; } Mint pow(long long n) const { Mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } Mint inv() const { if (prime) { return pow(umod() - 2); } else { auto eg = internal::modint::inv_gcd(_v, m); return eg.second; } } friend Mint operator+(const Mint& lhs, const Mint& rhs) { return Mint(lhs) += rhs; } friend Mint operator-(const Mint& lhs, const Mint& rhs) { return Mint(lhs) -= rhs; } friend Mint operator*(const Mint& lhs, const Mint& rhs) { return Mint(lhs) *= rhs; } friend Mint operator/(const Mint& lhs, const Mint& rhs) { return Mint(lhs) /= rhs; } friend bool operator==(const Mint& lhs, const Mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const Mint& lhs, const Mint& rhs) { return lhs._v != rhs._v; } friend std::istream& operator>>(std::istream& is, Mint& v) { long long x; is >> x; v = Mint(x); return is; } friend std::ostream& operator<<(std::ostream& os, const Mint& v) { return os << v.val(); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::modint::is_prime; }; template struct DynamicModint { using Mint = DynamicModint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { bt = internal::modint::barrett(m); } static Mint raw(int v) { Mint x; x._v = v; return x; } DynamicModint(): _v(0) {} template * = nullptr> DynamicModint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> DynamicModint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } Mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } Mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } Mint operator++(int) { Mint result = *this; ++*this; return result; } Mint operator--(int) { Mint result = *this; --*this; return result; } Mint& operator+=(const Mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } Mint& operator-=(const Mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } Mint& operator*=(const Mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } Mint& operator/=(const Mint& rhs) { return *this = *this * rhs.inv(); } Mint operator+() const { return *this; } Mint operator-() const { return Mint() - *this; } Mint pow(long long n) const { Mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } Mint inv() const { auto eg = internal::modint::inv_gcd(_v, mod()); return eg.second; } friend Mint operator+(const Mint& lhs, const Mint& rhs) { return Mint(lhs) += rhs; } friend Mint operator-(const Mint& lhs, const Mint& rhs) { return Mint(lhs) -= rhs; } friend Mint operator*(const Mint& lhs, const Mint& rhs) { return Mint(lhs) *= rhs; } friend Mint operator/(const Mint& lhs, const Mint& rhs) { return Mint(lhs) /= rhs; } friend bool operator==(const Mint& lhs, const Mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const Mint& lhs, const Mint& rhs) { return lhs._v != rhs._v; } friend std::istream& operator<<(std::istream& is, Mint& v) { long long x; is >> x; v = Mint(x); return is; } friend std::ostream& operator<<(std::ostream& os, const Mint& v) { return os << v.val(); } private: unsigned int _v; static internal::modint::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::modint::barrett DynamicModint::bt(998244353); using Modint998244353 = StaticModint<998244353>; using Modint1000000007 = StaticModint<1000000007>; using Modint = DynamicModint<-1>; } // namespace nono // ? ? x x // ? ? 1 x // x 0 1 x // x x x x void solve() { using Mint = nono::Modint998244353; ll h, w; cin >> h >> w; Mint ans = 8 * Mint(2).pow((h - 2) * (w - 2) + (h - 2) + (w - 2)); cout << ans << endl; } int main() { int t = 1; // cin >> t; while (t--) solve(); }