#include #include using namespace std; using ll = long long; template struct dual_segtree { public: dual_segtree() : dual_segtree(0) {} dual_segtree(int n) : dual_segtree(std::vector(n, id())) {} dual_segtree(const std::vector& v) : _n(int(v.size())) { log = ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; } const S& operator[](int p) const { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S& operator[](int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } void apply(int p, S f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); } void apply(int l, int r, S f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } } private: int _n, size, log; std::vector d; void all_apply(int k, S f) { d[k] = mapping(f, d[k]); } void push(int k) { all_apply(2 * k, d[k]); all_apply(2 * k + 1, d[k]); d[k] = id(); } int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } }; ll op(ll lhs, ll rhs){return lhs + rhs;} constexpr ll e(){return 0;} int main() { ios::sync_with_stdio(false); cin.tie(0); int n, m; cin >> n >> m; vector a(n), L(n), R(n), pos(n); dual_segtree seg(m), seg2(m); atcoder::fenwick_tree fw(m); for(int i = 0; i < n; i++){ cin >> a[i] >> L[i] >> R[i]; L[i]--; seg.apply(L[i], R[i], a[i]); seg2.apply(L[i], R[i], 1); fw.add(i, a[i]); pos[i] = i; } ll ans = 0; for(int i = 0; i < n; i++){ ans += (ll)(R[i] - L[i]) * a[i] - fw.sum(L[i], R[i]); } int Q; cin >> Q; while(Q--){ int x, y, l, r; cin >> x >> y >> l >> r; x--, y--, l--; ans -= (ll)(R[x] - L[x]) * a[x] - fw.sum(L[x], R[x]); //seg.apply(L[x], R[x], -a[x]); seg2.apply(L[x], R[x], -1); fw.add(pos[x], -a[x]); ans += a[x] * seg2[pos[x]]; L[x] = l, R[x] = r, pos[x] = y; ans -= a[x] * seg2[pos[x]]; //seg.apply(L[x], R[x], a[x]); seg2.apply(L[x], R[x], 1); fw.add(pos[x], a[x]); ans += (ll)(R[x] - L[x]) * a[x] - fw.sum(L[x], R[x]); cout << ans << '\n'; } }