# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b = map(int, input().split()) a += index b += index edge[a].add(b) if not dir: edge[b].add(a) return edge def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b,c = map(int, input().split()) a += index b += index edge[a].add((b,c)) if not dir: edge[b].add((a,c)) return edge mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") def acc(a:list[int]): sa = [0]*(len(a)+1) for i in range(len(a)): sa[i+1] = a[i] + sa[i] return sa prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) # sys.setrecursionlimit(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right class SegTree: __slots__ = ["n", "size", "op", "e", "data"] def __init__(self, op, e, lst): self.n = len(lst) self.size = 1 << (self.n - 1).bit_length() self.op = op self.e = e self.data = [e] * (2 * self.size) for i in range(self.n): self.data[self.size + i] = lst[i] for i in range(self.size - 1, 0, -1): self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def get(self, i): return self.data[self.size+i] def add(self, i, x): i += self.size self.data[i] = self.op(x, self.data[i]) while i > 1: i >>= 1 self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def set(self, i, x): i += self.size self.data[i] = x while i > 1: i >>= 1 self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def prod(self, l, r): if r <= l: return self.e lres = self.e rres = self.e l += self.size r += self.size while l < r: if l & 1: lres = self.op(lres, self.data[l]) l += 1 if r & 1: r -= 1 rres = self.op(self.data[r], rres) l >>= 1 r >>= 1 return self.op(lres, rres) def all_prod(self): return self.data[1] def max_right(self, l, g): assert 0<=l and l<=self.n assert g(self.e) if l == self.n: return self.n l += self.size sm = self.e while 1: while l&1 == 0: l >>= 1 if not(g(self.op(sm, self.data[l]))): while l < self.size: l = 2*l nsm = self.op(sm, self.data[l]) if g(nsm): sm = nsm l += 1 return l-self.size sm = self.op(sm, self.data[l]) l += 1 if (l&-l) == l: break return self.n def min_left(self, r, g): if r == -1: r = self.n assert 0<=r and r<=self.n assert g(self.e) if r == 0: return 0 r += self.size sm = self.e while 1: r -= 1 while (r>1 and r&1): r >>= 1 if not(g(self.op(self.data[r], sm))): while r < self.size: r = 2*r+1 nsm = self.op(self.data[r], sm) if g(nsm): sm = nsm r -= 1 return r + 1 -self.size sm = self.op(self.data[r], sm) if (r&-r) == r: break return 0 def __str__(self): return str(self.data[self.size:self.size+self.n]) class DualSegTree: #双対セグ木 def __init__(self, n, op, id, commutative=False): self.n = n self.op = op self.id = id self.log = (n - 1).bit_length() self.size = 1 << self.log self.d = [id] * self.size self.lz = [id] * (2 * self.size) self.commutative = commutative def build(self, arr): for i, a in enumerate(arr): self.d[i] = a def propagate(self, k): if self.lz[k] == self.id: return if k < self.size: self.lz[2 * k] = self.op(self.lz[k], self.lz[2 * k], ) self.lz[2 * k + 1] = self.op(self.lz[k], self.lz[2 * k + 1]) else: self.d[k - self.size] = self.op(self.lz[k], self.d[k - self.size]) self.lz[k] = self.id def get(self, p): res = self.d[p] p += self.size for i in range(self.log + 1): res = self.op(self.lz[p >> i], res) return res def apply(self, l, r, f): if l == r: return l += self.size r += self.size if not self.commutative: for i in range(1, self.log + 1)[::-1]: self.propagate(l >> i) self.propagate(r >> i) while l < r: if l & 1: self.lz[l] = self.op(f, self.lz[l]) l += 1 if r & 1: r -= 1 self.lz[r] = self.op(f, self.lz[r]) l >>= 1 r >>= 1 def all_propagate(self): for i in range(1, 2 * self.size): self.propagate(i) def all_apply(self, f): if not self.commutative: self.all_propagate() self.lz[1] = self.op(f, self.lz[1]) def get_all(self): self.all_propagate() return self.d[:self.n] n, m = MI() def add(x, y): return x + y def op(x, y): return (x[0] + y[0], x[1] + y[1]) def mapp(f, x): return (x[0] + x[1] * f, x[1]) s = SegTree(add, 0, [0] * m) c = DualSegTree(m, add, 0) aa = [] h = [] lr = [] for i in range(n): a, l, r = MI() l -= 1 aa.append(a) h.append(i) lr.append((l, r)) s.add(h[i], a) c.apply(l, r, 1) ans = 0 for i in range(n): a = aa[i] l, r = lr[i] ans += (r - l) * aa[i] - s.prod(l, r) q = II() for _ in range(q): i, y, u, v = MI() i -= 1 y -= 1 u -= 1 a = aa[i] l, r = lr[i] c.apply(l, r, -1) ans += a * c.get(h[i]) ans -= (r - l) * a - s.prod(l, r) s.add(h[i], -a) h[i] = y s.add(y, a) lr[i] = (u, v) ans -= a * c.get(h[i]) ans += (v - u) * a - s.prod(u, v) c.apply(u, v, 1) print(ans)