#include using namespace std; #define ll long long #define ull unsigned long long #define ld long double using LL = long long; using ULL = unsigned long long; using VI = vector; using VVI = vector; using VVVI = vector; using VL = vector; using VVL = vector; using VVVL = vector; using VB = vector; using VVB = vector; using VVVB = vector; using VD = vector; using VVD = vector; using VVVD = vector; using VC = vector; using VS = vector; using VVC = vector; using PII = pair; using PLL = pair; using PDD = pair; using PIL = pair; using MII = map; using MLL = map; using SI = set; using SL = set; using MSI = multiset; using MSL = multiset; template using MAXPQ = priority_queue; template using MINPQ = priority_queue< T, vector, greater >; const ll MOD = 1000000007; const ll MOD2 = 998244353; const ll INF = 1LL << 60; #define PI 3.14159265358979323846 #define FOR(i, a, b) for(int i = (a); i < (b); ++i) #define REP(i, n) FOR(i, 0, n) #define EACH(e, v) for(auto &e : v) #define RITR(it, v) for(auto it = (v).rbegin(); it != (v).rend(); ++it) #define ALL(v) v.begin(),v.end() vector x8={1,1,1,0,0,-1,-1,-1},y8={1,0,-1,1,-1,1,0,-1}; int dx4[4]={1,-1,0,0}, dy4[4]={0,0,1,-1}; /* memo -uf,RMQ(segtree),BIT,BIT2,SegTree,SegTreeLazy -isprime,Eratosthenes,gcdlcm,factorize,divisors,modpow,moddiv nCr(+modnCr,inverse,extend_euclid.powmod),tobaseB,tobase10 -dijkstra,Floyd,bellmanford,sccd,topological,treediamiter -compress1,compress2,rotate90 -co,ci,fo1,fo2,fo3,fo4 -bitsearch,binaryserach -bfs -SegTreedec,SegTreeLazydec */ struct Eratosthenes{ vector isPrime; vector minfactor; vector mebius; Eratosthenes(int N){ isPrime=vector(N+1,1); minfactor=vector(N+1,-1); mebius=vector(N+1,1); isPrime[1]=0; minfactor[1]=1; for(int i = 2; i <= N; i++){ if(isPrime[i]){ minfactor[i] = i; mebius[i] = -1; for(int j = i*2; j <= N; j += i){ isPrime[j] = 0; if(minfactor[j]==-1) minfactor[j] = i; if((j / i) % i == 0) mebius[j] = 0; else mebius[j] = -mebius[j]; } } } } vector> factorize(int n){ vector> res; while(n>1){ int p = minfactor[n]; int exp = 0; while(minfactor[n]==p){ n /= p; exp++; } res.push_back({p,exp}); } return res; } template void divisor_zeta(vector &f){ int N = f.size(); for(int i = 2; i < N; i++){ if(isPrime[i]){ for(int j = (N - 1)/i; j >= 1; j--){ f[j] += f[j*i]; } } } } template void divisor_mebius(vector &f){ int N = f.size(); for(int i = 2; i < N; i++){ if(isPrime[i]){ for(int j = 1; j*i < N; j++){ f[j] -= f[j*i]; } } } } }; int main(){ cin.tie(0); ios_base::sync_with_stdio(0); ll Q,M=2500; cin >> Q; Eratosthenes E(M); ll T = 1e5; Eratosthenes ET(T); VL p; for(ll i = 2; i <= M; i++){ if(E.isPrime[i]) p.push_back(i); } unordered_set sq; for(ll i = 2; i <= T; i++){ if(ET.isPrime[i]) sq.insert(i*i); } ll N = p.size(); while(Q--){ ll A; cin >> A; ll cnt = 0; for(ll i = 2; i <= M; i++){ if(E.isPrime[i]){ while(A % i == 0){ A /= i; cnt++; } } } //if(sq.count(A)) cnt += 2; //else if(A>1) cnt++; if(cnt==3 and A==1)cout << "Yes" << '\n'; else if(cnt==2 and A > 1) cout << "Yes" << '\n'; else if(cnt==1 and sq.count(A)) cout << "Yes" << '\n'; else cout << "No" << '\n'; } }