// QCFium 法 //#pragma GCC target("avx2") // yukicoder では消す #pragma GCC optimize("O3") // たまにバグる #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【任意文字列の列挙(置換)】O(n |cs|^n) /* * s[0..n) に含まれる '?' それぞれを cs の要素のいずれかに置き換えて * 得られる文字列全てを格納したリストを返す. */ vector enumerate_all_replace_strings(string s, const string& cs) { int n = sz(s); vector strs; function rf = [&](int i) { if (i == n) { strs.push_back(s); return; } if (s[i] == ';') { char c0 = s[i]; repe(c, cs) { s[i] = c; rf(i + 1); } s[i] = c0; } else { rf(i + 1); } }; rf(0); return strs; } ll naive_sub(const string& s) { int n = sz(s); if (s[n - 1] <= '1') return -INFL; rep(i, n - 1) if (s[i] <= '1' && s[i + 1] <= '1') return -INFL; //dump(s); ll sum = 0, num = 0, sgn = 1; repe(c, s) { // + if (c == '0') { sum += sgn * num; num = 0; sgn = 1; } // - else if (c == '1') { sum += sgn * num; num = 0; sgn = -1; } // num else { num = num * 10 + (c - '1'); } //dump(sum, mul, num); } sum += num * sgn; return sum; } #include using Bint = boost::multiprecision::cpp_int; using VTYPE = Bint; // 愚直 VTYPE naive(const string& s) { if (s == "") return 0; auto ss = enumerate_all_replace_strings(s, "0123456789:"); ll val_max = -INFL; string t_max; repe(t, ss) { auto val = naive_sub(t); if (chmax(val_max, val)) t_max = t; } rep(i, sz(t_max)) if (t_max[i] >= '1') t_max[i]--; VTYPE res = 0; rep(i, sz(t_max)) res = res * 10 + (t_max[i] - '0'); return res; } //【行列】 /* * Matrix(int n, int m) : O(n m) * n×m 零行列で初期化する. * * Matrix(int n) : O(n^2) * n×n 単位行列で初期化する. * * Matrix(vvT a) : O(n m) * 二次元配列 a[0..n)[0..m) の要素で初期化する. * * bool empty() : O(1) * 行列が空かを返す. * * A + B : O(n m) * n×m 行列 A, B の和を返す.+= も使用可. * * A - B : O(n m) * n×m 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n m) * n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n m) * n×m 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(n m)(やや遅い) * m 次元行ベクトル x と n×m 行列 A の積を返す. * * A * B : O(n m l) * n×m 行列 A と m×l 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) { // verify : https://judge.yosupo.jp/problem/matrix_product // inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった. return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { // verify : https://judge.yosupo.jp/problem/pow_of_matrix Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【転置】O(n m) /* * n×m 行列 A を転置した m×n 行列を返す. */ template Matrix transpose(const Matrix& A) { int n = A.n, m = A.m; Matrix AT(m, n); rep(i, n) rep(j, m) AT[j][i] = A[i][j]; return AT; } //【単因子標準形】O(n m (n + m) log A) /* * A = a[0..n)[0..m) を単因子標準形 E_r := diag(e[0..r)) に変換する行列,すなわち * P A Q = E_r * を満たす正則行列 P[0..n)[0..n), Q[0..m)[0..m) を求め,3 つ組 {e, P, Q} を返す. */ template tuple, Matrix, Matrix> smith_normal_form(Matrix A) { int n = A.n, m = A.m; auto A0(A); //dump("A0:"); dump(A0); Matrix P(n), Q(m); rep(k, min(n, m)) { //dump("k:", k); if (A[k][k] == 0) { repi(i, k, n - 1) repi(j, k, m - 1) { if (A[i][j] != 0) { if (i != k) { swap(A[k], A[i]); swap(P[k], P[i]); } if (j != k) { rep(i2, n) swap(A[i2][k], A[i2][j]); rep(i2, m) swap(Q[i2][k], Q[i2][j]); } i = n; break; } } } //dump("A:"); dump(A); if (A[k][k] == 0) break; while (1) { bool updated = false; repi(i, k + 1, n - 1) { T g = gcd(A[k][k], A[i][k]); while (abs(A[k][k]) != g) { T q = A[i][k] / A[k][k]; repi(j, k, m - 1) A[i][j] -= q * A[k][j]; rep(j, n) P[i][j] -= q * P[k][j]; swap(A[k], A[i]); swap(P[k], P[i]); updated = true; } } //dump("A:"); dump(A); repi(j, k + 1, m - 1) { T g = gcd(A[k][k], A[k][j]); while (abs(A[k][k]) != g) { T q = A[k][j] / A[k][k]; repi(i, k, n - 1) A[i][j] -= q * A[i][k]; rep(i, m) Q[i][j] -= q * Q[i][k]; rep(i, n) swap(A[i][k], A[i][j]); rep(i, m) swap(Q[i][k], Q[i][j]); updated = true; } } //dump("A:"); dump(A); if (!updated) break; } repi(i, k + 1, n - 1) { if (A[i][k] == 0) continue; T q = A[i][k] / A[k][k]; repi(j, k, m - 1) A[i][j] -= q * A[k][j]; rep(j, n) P[i][j] -= q * P[k][j]; } repi(j, k + 1, m - 1) { if (A[k][j] == 0) continue; T q = A[k][j] / A[k][k]; repi(i, k, n - 1) A[i][j] -= q * A[i][k]; rep(i, m) Q[i][j] -= q * Q[i][k]; } //dump("A:"); dump(A); } dump("A:"); dump(A); if (A != P * A0 * Q) { dump("P:"); dump(P); dump("A0:"); dump(A0); dump("Q:"); dump(Q); dump("P * A0 * Q:"); dump(P* A0* Q); dump("A:"); dump(A); exit(-1); } vector e; rep(i, min(n, m)) { if (A[i][i] == 0) break; e.push_back(A[i][i]); } return { e, P, Q }; } auto seed = 1757522739;// time(0); mt19937_64 mt(seed); // 遷移行列の係数を計算し,埋め込み用のコードを出力する. void embed_coefs(int COL, int len_max, int L_max, int loop_cnt, const vector& ssT_ini = { "" }, const vector& ssB_ini = { "" }) { uniform_int_distribution rnd_len(1, len_max); uniform_int_distribution rnd_col(0, 4); // COL - 1 uniform_int_distribution rnd(0, INF); dump("seed:", seed); vector ssT(ssT_ini), ssB(ssB_ini); // 候補とする文字列をランダムに L_max 個追加する. rep(hoge, L_max) { int len = rnd_len(mt); string s; rep(fuga, len) { auto tmp = rnd_col(mt); if (tmp == 4) tmp = COL - 1; s += '0' + tmp; } ssT.push_back(s); } rep(hoge, L_max / 2) { int len = rnd_len(mt); string s; rep(fuga, len) { auto tmp = rnd_col(mt); if (tmp == 4) tmp = COL - 1; s += '0' + tmp; } ssB.push_back(s); } uniq(ssT); uniq(ssB); //dump(ssT); dump(ssB); int LT = sz(ssT); int LB = sz(ssB); dump("LT:", LT, "LB:", LB); // (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る. Matrix mat(LT, LB); rep(i, LT) rep(j, LB) mat[i][j] = naive(ssT[i] + ssB[j]); //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto [e, P, Q] = smith_normal_form(mat); dump("e:"); dump(e); int RANK = sz(e); if (RANK < 6) exit(-1); //dump("P:"); dump(P); //dump("Q:"); dump(Q); vector> mats(COL, Matrix(LT, LB)); rep(c, COL) { char ch = '0' + c; rep(i, LT) rep(j, LB) mats[c][i][j] = naive(ssT[i] + ch + ssB[j]); } vector gR(RANK); rep(i, RANK) gR[i] = e[i]; rep(c, COL) { auto vecL = (mats[c] * Q)[0]; vecL.resize(RANK); rep(j, RANK) { gR[j] = gcd(gR[j], vecL[j]); } auto matA = P * mats[c] * Q; rep(i, RANK) rep(j, RANK) { gR[j] = gcd(gR[j], matA[i][j]); } } dump(gR); // 各文字に対応する左端ベクトルを得る. vector> vecLs(COL, vector(LT)); rep(c, COL) { vecLs[c] = (mats[c] * Q)[0]; vecLs[c].resize(RANK); rep(j, RANK) { vecLs[c][j] /= gR[j]; } } // 各文字に対応する表現行列を得る. vector> matAs(COL); rep(c, COL) { matAs[c] = P * mats[c] * Q; rep(i, RANK) rep(j, RANK) { matAs[c][i][j] /= gR[j]; if (matAs[c][i][j] % (e[i] / gR[i]) != 0) { dump("matAs", c, i, j, ":", matAs[c][i][j], (e[i] / gR[i])); exit(-1); } matAs[c][i][j] /= (e[i] / gR[i]); } matAs[c].resize(RANK, RANK); //dump("matAs"); dump(matAs[c]); } // 右端ベクトルを得る. vector vecR(LT); rep(i, LT) vecR[i] = mat[i][0]; vecR = P * vecR; vecR.resize(RANK); rep(i, RANK) { if (vecR[i] % (e[i] / gR[i]) != 0) { dump("vecR", i, ":", vecR[i], (e[i] / gR[i])); exit(-1); } vecR[i] /= (e[i] / gR[i]); } // 埋め込み用の文字列を出力する. string eb = "constexpr int DIM = "; eb += to_string(RANK); eb += ";\n"; eb += "constexpr int COL = "; eb += to_string(COL); eb += ";\n"; eb += "ll vecLs[COL][DIM] = {\n"; rep(c, COL) { eb += "{"; rep(j, RANK) eb += vecLs[c][j].str() + ","; eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; eb += "ll matAs[COL][DIM][DIM] = {\n"; rep(c, COL) { eb += "{"; rep(i, RANK) { eb += "{"; rep(j, RANK) eb += matAs[c][i][j].str() + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; eb += "ll vecR[DIM] = {"; rep(i, RANK) eb += vecR[i].str() + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); } //【正方行列(固定サイズ)】 /* * Fixed_matrix() : O(n^2) * T の要素を成分にもつ n×n 零行列で初期化する. * * Fixed_matrix(bool identity = true) : O(n^2) * T の要素を成分にもつ n×n 単位行列で初期化する. * * Fixed_matrix(vvT a) : O(n^2) * 二次元配列 a[0..n)[0..n) の要素で初期化する. * * A + B : O(n^2) * n×n 行列 A, B の和を返す.+= も使用可. * * A - B : O(n^2) * n×n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n^2) * n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n^2) * n×n 行列 A と n 次元列ベクトル array x の積を返す. * * x * A : O(n^2)(やや遅い) * n 次元行ベクトル array x と n×n 行列 A の積を返す. * * A * B : O(n^3) * n×n 行列 A と n×n 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template struct Fixed_matrix { array, n> v; // 行列の成分 // n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する. Fixed_matrix(bool identity = false) { rep(i, n) v[i].fill(T(0)); if (identity) rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..n) の要素で初期化する. Fixed_matrix(const vector>& a) { // verify : https://yukicoder.me/problems/no/1000 Assert(sz(a) == n && sz(a[0]) == n); rep(i, n) rep(j, n) v[i][j] = a[i][j]; } // 代入 Fixed_matrix(const Fixed_matrix&) = default; Fixed_matrix& operator=(const Fixed_matrix&) = default; // アクセス inline array const& operator[](int i) const { return v[i]; } inline array& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Fixed_matrix& a) { rep(i, n) rep(j, n) is >> a[i][j]; return is; } // 比較 bool operator==(const Fixed_matrix& b) const { return v == b.v; } bool operator!=(const Fixed_matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Fixed_matrix& operator+=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] += b[i][j]; return *this; } Fixed_matrix& operator-=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] -= b[i][j]; return *this; } Fixed_matrix& operator*=(const T& c) { rep(i, n) rep(j, n) v[i][j] *= c; return *this; } Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; } Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; } Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; } friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; } Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); } // 行列ベクトル積 : O(n^2) array operator*(const array& x) const { array y{ 0 }; rep(i, n) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(n^2) friend array operator*(const array& x, const Fixed_matrix& a) { array y{ 0 }; rep(i, n) rep(j, n) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Fixed_matrix operator*(const Fixed_matrix& b) const { // verify : https://yukicoder.me/problems/no/1000 Fixed_matrix res; rep(i, n) rep(k, n) rep(j, n) res[i][j] += v[i][k] * b[k][j]; return res; } Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Fixed_matrix pow(ll d) const { // verify : https://yukicoder.me/problems/no/2810 Fixed_matrix res(true), pow2(*this); while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Fixed_matrix& a) { rep(i, n) { os << "["; rep(j, n) os << a[i][j] << " ]"[j == n - 1]; if (i < n - 1) os << "\n"; } return os; } #endif }; template VTYPE solve(string s) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 6; constexpr int COL = 12; ll vecLs[COL][DIM] = { {0,1,0,0,0,0}, {0,1,0,0,-1,0}, {101,-90,1,0,0,0}, {201,-180,2,0,0,0}, {301,-270,3,0,0,0}, {401,-360,4,0,0,0}, {501,-450,5,0,0,0}, {601,-540,6,0,0,0}, {701,-630,7,0,0,0}, {801,-720,8,0,0,0}, {901,-810,9,0,0,0}, {901,-810,9,0,0,0} }; ll matAs[COL][DIM][DIM] = { {{0,1,0,0,0,0},{0,0,0,0,0,0},{0,0,0,-10,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}}, {{0,1,0,0,-1,0},{0,0,0,0,0,0},{0,0,0,-10,100,0},{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}}, {{101,-90,1,0,0,0},{101,-90,1,0,0,0},{-10,0,0,0,0,0},{10,0,0,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{201,-180,2,0,0,0},{201,-180,2,0,0,0},{-1010,900,-10,0,0,0},{1010,-900,10,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{301,-270,3,0,0,0},{301,-270,3,0,0,0},{-2010,1800,-20,0,0,0},{2010,-1800,20,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{401,-360,4,0,0,0},{401,-360,4,0,0,0},{-3010,2700,-30,0,0,0},{3010,-2700,30,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{501,-450,5,0,0,0},{501,-450,5,0,0,0},{-4010,3600,-40,0,0,0},{4010,-3600,40,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{601,-540,6,0,0,0},{601,-540,6,0,0,0},{-5010,4500,-50,0,0,0},{5010,-4500,50,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{701,-630,7,0,0,0},{701,-630,7,0,0,0},{-6010,5400,-60,0,0,0},{6010,-5400,60,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{801,-720,8,0,0,0},{801,-720,8,0,0,0},{-7010,6300,-70,0,0,0},{7010,-6300,70,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{901,-810,9,0,0,0},{901,-810,9,0,0,0},{-8010,7200,-80,0,0,0},{8010,-7200,80,0,0,0},{0,0,0,0,6,-1},{0,0,0,0,30,-5}}, {{901,-810,9,0,0,0},{901,-810,9,0,0,0},{-8010,7200,-80,0,0,0},{8010,-7200,80,0,0,0},{800,-720,8,0,6,-1},{4000,-3610,40,1,36,-6}} }; ll vecR[DIM] = { 0,0,1,0,0,0 }; // -------------------------------------------------------------- vector> VecLs(COL, vector(DIM)); rep(c, COL) rep(i, DIM) VecLs[c][i] = vecLs[c][i]; vector> MatAs(COL); rep(c, COL) rep(i, DIM) rep(j, DIM) MatAs[c][i][j] = matAs[c][i][j]; vector VecR(DIM); rep(i, DIM) VecR[i] = vecR[i]; auto VecL = VecLs[s[0] - '0']; s.erase(s.begin()); int n = sz(s); if (n == 0) { VTYPE res = 0; rep(i, DIM) res += VecL[i] * VecR[i]; return res; } vector> a(n); rep(p, n) a[p] = MatAs[s[p] - '0']; // 2 冪個ずつ掛けていく(分割統治法) for (int k = 1; k < n; k *= 2) { for (int i = 0; i + k < n; i += 2 * k) { a[i] = a[i] * a[i + k]; } } VTYPE res = 0; rep(i, DIM) rep(j, DIM) res += VecL[i] * a[0][i][j] * VecR[j]; return res; } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる. dump("naive:", naive("1212")); dump("====="); vector ssT_ini{ "" }, ssB_ini{ "" }; // (文字の種類数,長さの最大値,1回で追加する文字列の量,反復回数) // embed_coefs(12, 3, 50, 1, ssT_ini, ssB_ini); int T; cin >> T; rep(hoge, T) { string s; cin >> s; rep(i, sz(s)) { if (s[i] == '+') s[i] = '0'; else if (s[i] == '-') s[i] = '1'; else if (s[i] == '?') s[i] = ';'; else s[i] = s[i] + 1; } // dump("naive:", naive(s)); dump("====="); auto res = solve(s).str(); if (sz(res) != sz(s)) res.insert(res.begin(), '0'); rep(i, sz(s)) { if (res[i] == '0') { if (s[i] == '1') res[i] = '-'; else res[i] = '+'; } } cout << res << "\n"; // TLE. } }