// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; template using V = vector; template using VV = V>; template using VVV = V>; template using VVVV = VV>; #define rep(i,n) for(ll i=0ll;(i)<(n);(i)++) #define REP(i,a,n) for(ll i=(a);(i)<(n);(i)++) #define rrep(i,n) for(ll i=(n)-1;(i)>=(0ll);(i)--) #define RREP(i,a,n) for(ll i=(n)-1;(i)>=(a);(i)--) const long long INF = (1LL << 60); const long long mod99 = 998244353; const long long mod107 = 1000000007; const long long mod = mod99; #define eb emplace_back #define be(v) (v).begin(),(v).end() #define all(v) (v).begin(),(v).end() #define foa(i,v) for(auto& (i) : (v)) #define UQ(v) sort(be(v)), (v).erase(unique(be(v)), (v).end()) #define UQ2(v,cmp) sort(be(v)), (v).erase(unique(be(v),cmp), (v).end()) #define UQ3(v,cmp) sort(be(v),cmp), (v).erase(unique(be(v)), (v).end()) #define UQ4(v,cmp,cmp2) sort(be(v), cmp), (v).erase(unique(be(v),cmp2), (v).end()) #define LB(x,v) (lower_bound(be(v),(x))-(v).begin()) #define LB2(x,v,cmp) (lower_bound(be(v),(x),(cmp))-(v).begin()) #define UB(x,v) (upper_bound(be(v),(x))-(v).begin()) #define UB2(x,v,cmp) (upper_bound(be(v),(x),(cmp))-(v).begin()) #define dout() cout << fixed << setprecision(20) #define randinit() srand((unsigned)time(NULL)) template bool chmin(T& t, const U& u) { if (t > u){ t = u; return 1;} return 0; } template bool chmax(T& t, const U& u) { if (t < u){ t = u; return 1;} return 0; } ll Rnd(ll L=0, ll R=mod99){return rand()%(R-L)+L;} VV matmul(VV v, VV w, ll p=(1ll<<60)){ ll n1 = v.size(); ll n2 = w.size(); ll n3 = w[0].size(); VV ret(n1, V(n3, 0)); rep(i, n1) rep(j,n2) rep(k,n3) (ret[i][k] += v[i][j]*w[j][k]) %= p; return ret; } VV matpow(VV v, ll k, ll p){ if(k == 1) return v; ll n = v.size(); VV ret(n, V(n, 0)); rep(i, n) ret[i][i] = 1; if(k == 0) return ret; VV w = matpow(v, k/2, p); w = matmul(w, w, p); if(k%2) w = matmul(w, v, p); return w; } struct Combination{ vector fac, inv, finv; long long MOD; Combination(long long N = 200100, long long p = 998244353) : fac(N, 1), inv(N, 1), finv(N, 1), MOD(p){ for(long long i = 2; i < N; i++){ fac[i] = fac[i-1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD; finv[i] = finv[i-1] * inv[i] % MOD; } } long long com(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[k] % MOD * finv[n-k] % MOD; } long long per(long long n, long long k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * finv[n-k] % MOD; } }; long long modpow(long long n, long long k, long long p = mod){ long long a = n % p; long long ans = 1; while(k != 0) { if(k & 1) ans = ans * a % p; k /= 2; a = a * a % p; } return ans; } // n^(-1) ≡ b (mod p) となる b を求める long long modinv(long long n, long long p = mod) { // if(n == 1) return 1; // return p - modinv(p % n) * (p / n) % p; return modpow(n, p - 2, p); } // n^k ≡ b (mod p) となる最小の k を求める long long modlog(long long n, long long b, long long p = mod){ long long sqrt_p = sqrt(p); unordered_map n_pow; long long memo = 1; for(long long i = 0; i < sqrt_p; i ++){ if(!n_pow.count(memo)) n_pow[memo] = i; memo = memo * n % p; } memo = modinv(memo, p); long long ans = 0; while(!n_pow.count(b)){ if(ans >= p) return -1; ans += sqrt_p; b = b * memo % p; } ans += n_pow[b]; return ans % (p - 1); } // ax + by = gcd(a, b) を満たす (x, y) が格納される long long ext_gcd(long long a, long long b, long long &x, long long &y){ if(b == 0){ x = 1; y = 0; return a; } long long d = ext_gcd(b, a%b, y, x); y -= a/b*x; return d; } void solve(){ ll m = 200; V ok(m, -1); rep(i, 10) ok[i] = 1; auto chk = [&](auto&&chk, ll n) -> ll { if(ok[n] >= 0) return ok[n]; ll la = 10; ll s = 0; ll tmp = n; while(n){ ll x = n%10; n /= 10; s += x; if(la < x) la = -1; else la = x; } n = tmp; if(la == -1) return ok[n] = 0; return ok[n] = chk(chk, s); }; V nx(m+10, 201); for(ll i=m-1; i>=0; i--){ nx[i] = nx[i+1]; if(chk(chk, i)) nx[i] = i; } ll T; cin >> T; rep(t, T){ ll n; cin >> n; if(n == 0){ cout << 1 << '\n'; continue; } ll m = n+1; V v; while(m){ v.eb(m%10); m /= 10; } m = n+1; ll val = INF; auto slv = [&](ll m) -> ll { ll mm = m; V v; while(m){ v.eb(m%10); m /= 10; } m = mm; ll la = 0, f = 1, rest = 0; ll s = 0; for(ll i=v.size()-1; i>=0; i--){ if(v[i] >= la and f) la = v[i]; else{ f = 0; v[i] = la; } s += v[i]; } ll nxt = nx[s]; if(v.size() * 9 < nxt){ return INF; } nxt -= s; ll i = 0; while(nxt){ if(nxt + v[i] <= 9){ v[i] += nxt; nxt = 0; }else{ nxt -= 9 - v[i]; v[i] = 9; } i++; } m = 0; while(!v.empty()){ m = m*10 + v.back(); v.pop_back(); } return m; }; chmin(val, slv(m)); m++; rep(i, v.size()){ m += (9 - v[i]) * modpow(10, i, INF); // cout << m << endl; chmin(val, slv(m)); } n ++; m = val; chmax(n, (m+8) / 9); // cout << n << " " << m << endl; ll ans = 0; if(n * 9 - 8 <= m){ ll r = m % 9; ans += modpow(10, n, mod) * (r + 1); ans -= 1; ans %= mod; }else{ ans += (modpow(10, n, mod) - 1) * modinv(9, mod); ans %= mod; m -= n; ll r = m % 8; ll keta = m / 8; ans += (modpow(10, keta, mod) - 1) * 8 % mod * modinv(9, mod) % mod; ans %= mod; ans += modpow(10, keta, mod) * r; ans %= mod; } ans %= mod; ans += mod; ans %= mod; cout << ans << endl; } } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int t=1; // cin >> t; rep(i,t) solve(); }