#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif // 頂点 0 を virtual な根とする木 par に対する愚直解を計算する. // virtual な根を考えたくなければ,頂点 0 と接続辺を無視して森として扱えばいい. ll naive(const vi& par) { int n = sz(par) + 1; int res = 0; repb(set, n) { // virtual な根は選択不可とする. if (getb(set, 0)) continue; bool ok = true; repi(i, 1, n - 1) { if (getb(set, i) && getb(set, par[i - 1])) { ok = false; break; } } if (ok) chmax(res, popcount(set)); } return res; } //【グラフの入力】O(n + m) /* * (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す. * * n : グラフの頂点の数 * m : グラフの辺の数(省略すれば n-1) * directed : 有向グラフか(省略すれば false) * zero_indexed : 入力が 0-indexed か(省略すれば false) */ Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bi Graph g(n); if (m == -1) m = n - 1; rep(j, m) { int a, b; cin >> a >> b; if (!zero_indexed) { --a; --b; } g[a].push_back(b); if (!directed && a != b) g[b].push_back(a); } return g; } // (グラフ, 根) を naive() への入力形式に直す. vi inputform(const Graph& g, int r) { int n = sz(g); vi par(n); function dfs = [&](int s, int p) { par[s] = { p + 1 }; repe(t, g[s]) { if (t == p) continue; dfs(t, s); } }; dfs(r, -1); return par; } //【根付き木の同型類】O(n log n) /* * r を根とする根付き木 g について,各部分木の同型類を分類したリストを返す. */ vi rooted_tree_classification(const Graph& g, int r) { // 参考 : https://chocobaby-aporo.hatenablog.com/entry/2017/12/05/233027 // verify : https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification int n = sz(g); static map to_id; vi id(n); function dfs = [&](int s, int p) { vi ch; repe(t, g[s]) { if (t == p) continue; ch.push_back(dfs(t, s)); } sort(all(ch)); if (to_id.count(ch)) id[s] = to_id[ch]; else id[s] = to_id[ch] = sz(to_id); return id[s]; }; dfs(r, -1); return id; } //【木のランダム生成】O(?) /* * n 頂点のランダムな木を返す. */ Graph create_random_tree(int n) { Graph g(n); static mt19937_64 mt; static bool first_call = true; if (first_call) { mt = mt19937_64((int)time(NULL)); first_call = false; } uniform_int_distribution rnd(0, n - 1); dsu d(n); while (d.size(0) < n) { int u = rnd(mt), v = rnd(mt); if (d.same(u, v)) continue; g[u].emplace_back(v); g[v].emplace_back(u); d.merge(u, v); } return g; } //【木の出力】O(n + m) /* * 木を【木の入力】で受け取る入力と同じ形式で出力する. * * directed : 有向木か(省略すれば false) * zero_indexed : 入力が 0-indexed か(省略すれば false) */ void write_Tree(const Graph& g, bool directed = false, bool zero_indexed = false) { int n = sz(g); cout << n << endl; rep(s, n) repe(t, g[s]) { if (!directed && s > t) continue; int u = s + (!zero_indexed), v = t + (!zero_indexed); cout << u << " " << v << " " << endl; } } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 待てない場合は lv_max や LT_max を指定する. tuple embed_coefs(int lv_min = 0, int lv_max = INF, int LT_max = INF, vvi treesB_ini = { {} }) { vvi trees{ {0} }; int idx = 0; int ID = rooted_tree_classification(Graph{ {1},{0} }, 0)[0]; int PDIM = -1; repi(lv, 2, INF) { dump("----------- lv:", lv, "--------------"); // 上用の木と下用の木に整形する. vvi treesT, treesB; treesT.push_back(vi{0}); repe(treeB, treesB_ini) treesB.push_back(treeB); rep(i, idx) repi(p, 0, sz(trees[i])) { treesT.push_back(trees[i]); treesT.back().push_back(p); } repe(tree, trees) treesB.push_back(tree); int LT = min(sz(treesT), LT_max); int LB = sz(treesB); dump("LT:", LT, "LB:", LB); //dump(treesT); dump(treesB); // (i,j) 成分が naive(trees[i] join trees[j]) であるような行列 mat を得る. vvl mat(LT, vl(LB)); rep(i, LT) rep(j, LB) { vi tree(treesT[i]); int p0 = tree.back(); tree.pop_back(); int offset = sz(tree); repe(p, treesB[j]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } mat[i][j] = naive(tree); } //dump("mat:"); dumpel(mat); // mat から max-plus 線形独立な行を抜き出す. vi js; int DIM = 0; rep(j, LB) { vl coef(DIM, INFL); rep(j2, DIM) rep(i, LT) { if (mat[i][js[j2]] == -INFL) continue; chmin(coef[j2], mat[i][j] - mat[i][js[j2]]); } bool ok = true; rep(i, LT) { ll val = -INFL; rep(j2, DIM) { ll nval = mat[i][js[j2]] + coef[j2]; if (nval < -INFL / 2) continue; chmax(val, nval); } if (val != mat[i][j]) { ok = false; break; } } if (!ok) { js.push_back(j); DIM++; } } dump("js[0.." + to_string(DIM) + "):"); dump(js); vvi treesB_sub; repe(j, js) treesB_sub.push_back(treesB[j]); dump_math(treesB_sub); // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る. if (lv == lv_max || (lv >= lv_min && DIM == PDIM)) { // たまにミスる // apply の表現行列を得る. vvl matA(DIM, vl(DIM, INFL)); rep(j, DIM) { vl vec(LT); rep(i, LT) { vi tree(treesT[i]); int offset = sz(tree); repe(p, treesB[js[j]]) { int np = p + offset; tree.push_back(np); } vec[i] = naive(tree); } rep(k, DIM) rep(i, LT) { if (mat[i][js[k]] == -INFL) continue; chmin(matA[j][k], vec[i] - mat[i][js[k]]); } vl vec2(LT); rep(i, LT) { vec2[i] = -INFL; rep(k, DIM) { ll nval = mat[i][js[k]] + matA[j][k]; if (nval < -INFL / 2) continue; chmax(vec2[i], nval); } } if (vec2 != vec) { dump("ERROR!"); dump("j:", j, "treesB[js[j]]:", treesB[js[j]]); dump("vec:"); dump(vec); dump("vec2:"); dump(vec2); exit(-1); } rep(k_el, DIM) { vl vec_el(LT, -INFL); rep(k, DIM) { if (k == k_el) continue; rep(i, LT) { auto nval = mat[i][js[k]] + matA[j][k]; if (nval < -INFL / 2) continue; chmax(vec_el[i], nval); } } if (vec_el == vec) matA[j][k_el] = -INFL; } } // merge の表現テンソルを得る. vvvl tsrM(DIM, vvl(DIM, vl(DIM, INFL))); rep(j1, DIM) rep(j2, DIM) { if (j1 > j2) { rep(k, DIM) { tsrM[j1][j2][k] = tsrM[j2][j1][k]; } } else { vl vec(LT); rep(i, LT) { vi tree(treesT[i]); int p0 = tree.back(); tree.pop_back(); int offset = sz(tree); repe(p, treesB[js[j1]]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } offset = sz(tree); repe(p, treesB[js[j2]]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } vec[i] = naive(tree); } rep(k, DIM) rep(i, LT) { if (mat[i][js[k]] == -INFL) continue; chmin(tsrM[j1][j2][k], vec[i] - mat[i][js[k]]); } vl vec2(LT); rep(i, LT) { vec2[i] = -INFL; rep(k, DIM) { ll nval = mat[i][js[k]] + tsrM[j1][j2][k]; if (nval < -INFL / 2) continue; chmax(vec2[i], nval); } } if (vec2 != vec) { dump("ERROR!"); dump("j1:", j1, "treesB[js[j1]]:", treesB[js[j1]]); dump("j2:", j2, "treesB[js[j2]]:", treesB[js[j2]]); dump("vec:"); dump(vec); dump("vec2:"); dump(vec2); exit(-1); } rep(k_el, DIM) { vl vec_el(LT, -INFL); rep(k, DIM) { if (k == k_el) continue; rep(i, LT) { auto nval = mat[i][js[k]] + tsrM[j1][j2][k]; if (nval < -INFL / 2) continue; chmax(vec_el[i], nval); } } if (vec_el == vec) tsrM[j1][j2][k_el] = -INFL; } } } // 根を閉じるためのベクトルを得る. vl vecQ(DIM); rep(j, DIM) vecQ[j] = mat[0][js[j]]; // 埋め込み用の文字列を出力する. string eb = "\n"; eb += "constexpr int DIM = "; eb += to_string(DIM); eb += ";\n"; eb += "VTYPE matA[DIM][DIM] = {"; rep(j, DIM) { eb += "{"; rep(k, DIM) eb += to_string(matA[j][k]) + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n"; eb += "VTYPE tsrM[DIM][DIM][DIM] = {"; rep(j1, DIM) { eb += "{"; rep(j2, DIM) { eb += "{"; rep(k, DIM) eb += to_string(tsrM[j1][j2][k]) + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n"; eb += "VTYPE vecQ[DIM] = {"; rep(j, DIM) eb += to_string(vecQ[j]) + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); return { matA, tsrM, vecQ }; } // 基底ガチャ //mt19937_64 mt((int)time(NULL)); shuffle(trees.begin() + idx, trees.end(), mt); // 次に大きい木たちを trees に追加する. int nidx = sz(trees); repi(i, idx, nidx - 1) rep(p, lv) { trees.push_back(trees[i]); trees.back().push_back(p); Graph g(lv + 1); rep(j, lv) { g[j + 1].push_back(trees.back()[j]); g[trees.back()[j]].push_back(j + 1); } auto hash = rooted_tree_classification(g, 0); if (hash[0] <= ID) { trees.pop_back(); continue; } ID = hash[0]; } idx = nidx; PDIM = DIM; } return tuple(); } template vector solve(const Graph& g, int r) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 2; VTYPE matA[DIM][DIM] = { {-4004004004,0},{1,-4004004004} }; VTYPE tsrM[DIM][DIM][DIM] = { {{0,-4004004004},{-4004004004,0}},{{-4004004004,0},{-4004004004,1}} }; VTYPE vecQ[DIM] = { 0,1 }; // -------------------------------------------------------------- // ここ以降は書き換えなくて良い. int n = sz(g); vector> dp(n); rep(s, n) { dp[s].fill((VTYPE)(-INFL)); dp[s][0] = 0; } auto apply = [&](const array& x) { array z; z.fill((VTYPE)(-INFL)); rep(j, DIM) { rep(k, DIM) chmax(z[k], x[j] + matA[j][k]); } return z; }; auto merge = [&](const array& x, const array& y) { array z; z.fill((VTYPE)(-INFL)); rep(j1, DIM) rep(j2, DIM) { rep(k, DIM) chmax(z[k], x[j1] + y[j2] + tsrM[j1][j2][k]); } return z; }; function dfs = [&](int s, int p) { bool first_call = true; repe(t, g[s]) { if (t == p) continue; dfs(t, s); if (first_call) { dp[s] = dp[t]; } else { dp[s] = merge(dp[s], dp[t]); } first_call = false; } dp[s] = apply(dp[s]); }; dfs(r, -1); dump("dp:"); dumpel(dp); vector res(n, (VTYPE)(-INFL)); rep(s, n) { rep(j, DIM) chmax(res[s], vecQ[j] + dp[s][j]); } return res; } void bug_find() { #ifdef _MSC_VER // 合わない入力例を見つける. mt19937_64 mt((int)time(NULL)); uniform_int_distribution rnd(0LL, 1LL << 60); rep(hoge, 1000000) { //dump("=================================================================================="); int n = rnd(mt) % 30 + 1; auto g = create_random_tree(n); auto res_naive = naive(inputform(g, 0)); auto res_solve = solve(g, 0)[0]; if (res_naive != res_solve) { cout << "----------error!----------" << endl; cout << "input:" << endl; write_Tree(g); cout << "results:" << endl; cout << res_naive << endl; cout << res_solve << endl; cout << "--------------------------" << endl; //exit(-1); } } mute_dump = false; exit(0); #endif } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移テンソルを復元する. //【使い方】 // 1. mint naive(親の列) を実装する. // 2. embed_coefs(); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(グラフ, 根) で勝手に DP してくれる. // INFL = 999; // bug_find(); // embed_coefs(0, INF, INF); vvi treesB = { {}, { 0,1,2,3,4,5,6,7,8,9 } }; // embed_coefs(0, INF, INF, treesB); int n; cin >> n; auto g = read_Graph(n); dump("naive:", naive(inputform(g, 0))); dump("======"); auto dp = solve(g, 0); cout << dp[0] << "\n"; }