use std::io::Write; fn run() { input! { n: usize, s: [u64; n], q: usize, p: [(u64, u64); q], } let mut a = vec![]; let mut l = 0; while l < p.len() { let (s, mut t) = p[l]; t += s; l += 1; while let Some(&p) = p.get(l) { if p.0 <= t { t += p.1; l += 1; } else { break; } } a.push(t - s); } let mut z = s.clone(); z.sort(); z.dedup(); let mut ans = vec![0; z.len()]; let mut sum = 0; let mut h = RadixHeap::new(); for (i, &a) in a.iter().enumerate() { h.push(1, i); sum += a; } for (ans, &z) in ans.iter_mut().zip(z.iter()) { while let Some((r, k)) = h.pop() { if z <= r { h.push(r, k); break; } sum -= a[k] / r; if r < a[k] { let q = a[k] / (r + 1); sum += q; h.push(a[k] / q, k); } } *ans = sum; } let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for s in s { let x = z.binary_search(&s).unwrap(); writeln!(out, "{}", ans[x]).ok(); } } fn main() { run(); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin radix heap ---------- pub trait RadixKeyType: Copy + Ord + std::ops::BitXor { fn leading_zeros(self) -> usize; fn zero() -> Self; const SIZE: usize = std::mem::size_of::() * 8; fn bsr(self) -> usize { Self::SIZE - self.leading_zeros() as usize } } pub struct RadixHeap { buf: Vec>, last: K, } impl RadixHeap where K: RadixKeyType, { pub fn new() -> Self { RadixHeap { buf: (0..K::SIZE).map(|_| vec![]).collect(), last: K::zero(), } } pub fn init(&mut self) { self.buf.iter_mut().for_each(|p| p.clear()); self.last = K::zero(); } pub fn push(&mut self, key: K, val: V) { assert!(self.last <= key); self.buf[(self.last ^ key).bsr()].push((key, val)); } pub fn pop(&mut self) -> Option<(K, V)> { if self.buf[0].is_empty() { if let Some(x) = self.buf.iter().position(|a| !a.is_empty()) { let mut a = std::mem::take(&mut self.buf[x]); self.last = a.iter().map(|p| p.0).min().unwrap(); for (key, val) in a.drain(..) { self.buf[(self.last ^ key).bsr()].push((key, val)); } self.buf[x] = a; } } self.buf[0].pop() } } macro_rules! impl_radix_key_type { ($x: ty) => { impl RadixKeyType for $x { fn leading_zeros(self) -> usize { self.leading_zeros() as usize } fn zero() -> Self { 0 } } }; } impl_radix_key_type!(u64); impl_radix_key_type!(u32); impl_radix_key_type!(usize); // ---------- end radix heap ----------