use std::io::Write; fn run() { input! { n: usize, s: [usize; n], q: usize, p: [(usize, usize); q], } let mut a = vec![]; let mut l = 0; while l < p.len() { let (s, mut t) = p[l]; t += s; l += 1; while let Some(&p) = p.get(l) { if p.0 <= t { t += p.1; l += 1; } else { break; } } a.push(t - s); } let sa = a.iter().sum::(); let m = (1..).find(|k| *k * *k > sa).unwrap(); let mut imos = vec![0; m + 2]; let mut memo = vec![]; for a in a { let mut l = 1; while l <= m && l <= a { let q = a / l; let r = m.min(a / q); imos[l] += q; imos[r + 1] -= q; l = r + 1; } while l <= a { let q = a / l; let r = a / q; memo.push((l, q)); memo.push((r + 1, !q + 1)); l = r + 1; } } memo.sort(); memo.dedup_by(|a, b| a.0 == b.0 && { b.1 += a.1; true }); for i in 1..imos.len() { imos[i] += imos[i - 1]; } for i in 1..memo.len() { memo[i].1 += memo[i - 1].1; } let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for s in s { let ans = if s <= m { imos[s] } else { let x = memo.upper_bound_by_key(&s, |p| p.0); memo[x - 1].1 }; writeln!(out, "{}", ans).ok(); } } fn main() { run(); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin radix heap ---------- pub trait RadixKeyType: Copy + Ord + std::ops::BitXor { fn leading_zeros(self) -> usize; fn zero() -> Self; const SIZE: usize = std::mem::size_of::() * 8; fn bsr(self) -> usize { Self::SIZE - self.leading_zeros() as usize } } pub struct RadixHeap { buf: Vec>, last: K, } impl RadixHeap where K: RadixKeyType, { pub fn new() -> Self { RadixHeap { buf: (0..K::SIZE).map(|_| vec![]).collect(), last: K::zero(), } } pub fn init(&mut self) { self.buf.iter_mut().for_each(|p| p.clear()); self.last = K::zero(); } pub fn push(&mut self, key: K, val: V) { assert!(self.last <= key); self.buf[(self.last ^ key).bsr()].push((key, val)); } pub fn pop(&mut self) -> Option<(K, V)> { if self.buf[0].is_empty() { if let Some(x) = self.buf.iter().position(|a| !a.is_empty()) { let mut a = std::mem::take(&mut self.buf[x]); self.last = a.iter().map(|p| p.0).min().unwrap(); for (key, val) in a.drain(..) { self.buf[(self.last ^ key).bsr()].push((key, val)); } self.buf[x] = a; } } self.buf[0].pop() } } macro_rules! impl_radix_key_type { ($x: ty) => { impl RadixKeyType for $x { fn leading_zeros(self) -> usize { self.leading_zeros() as usize } fn zero() -> Self { 0 } } }; } impl_radix_key_type!(u64); impl_radix_key_type!(u32); impl_radix_key_type!(usize); // ---------- end radix heap ---------- // ---------- begin super slice ---------- pub trait SuperSlice { type Item; fn lower_bound(&self, key: &Self::Item) -> usize where Self::Item: Ord; fn lower_bound_by(&self, f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering; fn lower_bound_by_key(&self, key: &K, f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K; fn upper_bound(&self, key: &Self::Item) -> usize where Self::Item: Ord; fn upper_bound_by(&self, f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering; fn upper_bound_by_key(&self, key: &K, f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K; fn next_permutation(&mut self) -> bool where Self::Item: Ord; fn next_permutation_by(&mut self, f: F) -> bool where F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering; fn prev_permutation(&mut self) -> bool where Self::Item: Ord; } impl SuperSlice for [T] { type Item = T; fn lower_bound(&self, key: &Self::Item) -> usize where T: Ord, { self.lower_bound_by(|p| p.cmp(key)) } fn lower_bound_by(&self, mut f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering, { self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Greater)) .unwrap_err() } fn lower_bound_by_key(&self, key: &K, mut f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K, { self.lower_bound_by(|p| f(p).cmp(key)) } fn upper_bound(&self, key: &Self::Item) -> usize where T: Ord, { self.upper_bound_by(|p| p.cmp(key)) } fn upper_bound_by(&self, mut f: F) -> usize where F: FnMut(&Self::Item) -> std::cmp::Ordering, { self.binary_search_by(|p| f(p).then(std::cmp::Ordering::Less)) .unwrap_err() } fn upper_bound_by_key(&self, key: &K, mut f: F) -> usize where K: Ord, F: FnMut(&Self::Item) -> K, { self.upper_bound_by(|p| f(p).cmp(key)) } fn next_permutation(&mut self) -> bool where T: Ord, { self.next_permutation_by(|a, b| a.cmp(b)) } fn next_permutation_by(&mut self, mut f: F) -> bool where F: FnMut(&Self::Item, &Self::Item) -> std::cmp::Ordering, { use std::cmp::Ordering::*; if let Some(x) = self.windows(2).rposition(|a| f(&a[0], &a[1]) == Less) { let y = self.iter().rposition(|b| f(&self[x], b) == Less).unwrap(); self.swap(x, y); self[(x + 1)..].reverse(); true } else { self.reverse(); false } } fn prev_permutation(&mut self) -> bool where T: Ord, { self.next_permutation_by(|a, b| a.cmp(b).reverse()) } } // ---------- end super slice ----------